The Strong Fields, Integrability and Strings programme, which took place at the Isaac Newton Institute in 2007, explored an area that would have been close to Isaac Newton's heart: how to unify Einstein's theory of gravity, a continuation of Newton's own work on gravitation, with quantum field theory, which describes the atomic and sub-atomic world, but cannot account for the force of gravity.
It's official: the notorious Higgs boson has been discovered at the Large Hadron Collider at CERN. The Higgs is a subatomic particle whose existence was predicted by theoretical physics. Also termed the god particle, the Higgs boson is said to have given other particles their mass. But how did it do that? In this two-part article we explore the so-called Higgs mechanism, starting with the humble bar magnet and ending with a dramatic transformation of the early Universe.

In the first part of this article we explored Landau's theory of phase transitions in materials such as magnets. We now go on to see how this theory formed the basis of the Higgs mechanism, which postulates the existence of the mysterious Higgs boson and explains how the particles that make up our Universe came to have mass.

John Barrow gives us an overview, from Aristotle's ideas to Cantor's never-ending tower of mathematical infinities, and from shock waves to black holes.

Infinity is a pain. Its paradoxes easily ensnare the unsuspecting reasoner. So over the centuries, mathematicians have carefully constructed bulwarks against its predations. But now cosmologists have developed theories that put them squarely outside the mathematicians' "green zone" of safety.

Quantum mechanics and general relativity are incompatible — and this has led to a decades-long search for a theory of quantum gravity that could combine the two. But the particle physicist Richard Woodard thinks that the mismatch between the two could be nothing more than an illusion, created by the complicated maths techniques used in attempts to unite them.