Articles

Backgammon is said to be one of the oldest games in the world. In this article, Jochen Blath and Peter Mörters discuss one particularly interesting aspect of the game - the doubling cube. They show how a model using Brownian motion can help a player to decide when to double or accept a double.
A question which has been vexing astronomers for a long time is whether the forces of attraction between stars and galaxies will eventually result in the universe collapsing back into a single point, or whether it will expand forever with the distances between stars and galaxies growing ever larger. Toby O'Neil describes how the mathematical theory of dimension gives us a way of approaching the question.
Claude Shannon, who died on February 24, was the founder of Information Theory, which is the basis of modern telecommunications. Rachel Thomas looks at Shannon's life and works.

Suppose you have an infinitely large sheet of paper (mathematicians refer to this hypothetical object as the plane). You also have a number of different colours - pots of paint, perhaps. Your aim is to colour every point on the plane using the colours available. That is, each point must be assigned one colour.

Knots crop up all over the place, from tying a shoelace to molecular structure, but they are also elegant mathematical objects. Colin Adams asks when is a molecule knot a molecule? and what happens if you try to build a knot out of sticks?