Articles
C. J. Budd and C. J. Sangwin show us how to create mazes, and explain why mazes and networks have much in common. In fact the study of mazes and labyrinths takes us into the dark territory of murder, suicide, adultery, passion, intrigue, religion and conquest... 
Why can't human beings walk as fast as they run? And why do we prefer to break into a run rather than walk above a certain speed? Using mathematical modelling, R. McNeill Alexander finds some answers.

There are many sorts of games played in a "bunco booth", where a trickster or sleightofhand expert tries to relieve you of your money by getting you to place bets  on which cup the ball is under, for instance, or where the queen of spades is. Lots of these games can be analysed using probability theory, and it soon becomes obvious that the games are tipped heavily in favour of the trickster! 
Arguably, the exponential function crops up more than any other when using mathematics to describe the physical world. In the first of two articles on physical phenomena which obey exponential laws, Ian Garbett discusses light attenuation  the way in which light decreases in intensity as it passes through a medium.

Last October, two mathematicians won £1m when it was revealed that they were the first to solve the Eternity jigsaw puzzle. It had taken them six months and a generous helping of mathematical analysis. Mark Wainwright meets the pair and finds out how they did it.

Steven J. Brams uses the Cuban missile crisis to illustrate the Theory of Moves, which is not just an abstract mathematical model but one that mirrors the reallife choices, and underlying thinking, of fleshandblood decision makers.
