Plus Blog
October 23, 2014
The chorus of people singing happy birthday to Maths Inspiration today could be deafening, particularly if the 100,000 teenagers who have been lucky enough to go along to these shows over the last 10 years join in! Maths Inspiration, set up by Plus's good friend Rob Eastaway, is a fantastic project that runs interactive maths shows all over the UK. The shows are for 1417 year olds and demonstrate how maths is useful beyond school. And they do more than that, they make maths cool! The shows are held in some of the most prestigious theatres in the country, including The Palace Theatre in London, The Crucible in Sheffield and The Bristol Hippodrome, and feature comedians, teachers, musicians, space scientists, stadium designers, medical professionals, and fitness instructors, who all also happen to be mathematicians. Each show features several talks on topics ranging from roller coasters to the maths used to convict criminals and is very interactive. Students are invited on stage to participate in demonstrations throughout the show. And if you haven't had a chance to see one of their shows yet, you can still join the party. Their Autumn shows feature Rob Eastaway explaining what the competition between Coke and Pepsi can tell us about world peace, Hannah Fry examining how human connections can cause everything from the movement of crowds, to fashion, and can even help catch the odd burglar, and Ben Sparks will show why emotion, art and mathematics go hand in hand. You can book now at the Maths Inspiration website. And if you're not able to attend a show, you can still catch some of their shows on DVD. From the Plus team and the 100,000 other lucky people to have seen your shows, Happy tenth birthday Maths Inspiration! You can read more on Plus about Maths Inspiration in Maths inspires a roller coaster ride and many articles by Rob Eastawy as well as reviews of his great books. 
October 22, 2014
Our image of the week shows the courtyard of the British Museum in London with its beautiful glass and steel roof. The courtyard of the British Museum with its famous mathematical roof and reading room in the middle. Image © The British Museum. Officially the space is named the Queen Elizabeth II Great Court. Designed by Foster and Partners it transformed the Museum's inner courtyard into the largest covered public square in Europe. The courtyard was originally meant to be a garden, but in 1852–7 the Reading Room and a number of book stacks were built in it to house the library department of the Museum and the space was lost. Then, in 1997, the department moved to the new British Library building and there was an opportunity to reopen the space to the public. A competition was launched and won by Lord Foster, whose design is loosely based on the concept for the roof of the Reichstag in Berlin, Germany. The canopy of the roof was constructed out of 3,312 panes of glass, no two of which are the same. The picture is one of the images that appear in the book 50 visions of mathematics, which celebrates the 50th anniversary of the Institute of Mathematics and its Applications. You can see previous images of the week here. Find out more about the maths behind Foster and Partners architecture here. 
October 13, 2014
Our image of the week shows a Klein bottle! Image © Charles Trevelyan. The Klein bottle is a very strange shape, discovered in 1882 by the mathematician Felix Klein. It intersects itself, only has one side (as opposed to an inside and an outside) and you can turn a pattern drawn on the bottle into its mirror image simply by sliding it along. You can find out more here. This picture of the Klein bottle was created by Charles Trevelyan and rendered partially transparent so that we can see the inside. The picture is one of the images that appear in the book 50 visions of mathematics, which celebrates the 50th anniversary of the Institute of Mathematics and its Applications. You can see previous images of the week here. 
October 6, 2014
No, honestly, this isn't abstract art! At least not on purpose. It's a visualisation of a function of a complex variable using a method called domain colouring. Image created by Maksim Zhuk. The method was developed by Frank Farris; you can find a description of it here. The image was produced by Maksim Zhuk using the Pygame library within Python. The picture is one of the images that appear in the book 50 visions of mathematics, which celebrates the 50th anniversary of the Institute of Mathematics and its Applications. You can see previous images of the week here. 
October 2, 2014
We have just learnt a really nice fact about the game of tictactoe. As you may know, tictactoe always results in a draw if both players make the best moves possible at every step of the game. To force a draw you need to follow a particular strategy, which isn't too hard, but tedious to write down (see here). But now imagine you play tictactoe the other way around, so that the first person to get three in a row loses the game. Again the game will end in a draw if both players play optimally. But this time the strategy for the first player is really easy: at your first move, choose the central square, and after that simply mirror your opponent's moves. By "mirror" we mean that you choose the square that is diametrically opposite the last square the opponent chose: if the opponent chose the top right corner, you choose the bottom left one, if they chose the middle top one, you choose the middle bottom one, and so on. The same works in a version of tictactoe that has, not 3x3, but nxn squares, where n is an odd number (if n is even there is no central square). Again we play the version in which the player who first gets n in a row loses. If the first player adopts the strategy above, they will never lose. It's not too difficult to see why this strategy works. Let's call the player who goes first A and the other one B. After A takes the central square at the first move, B goes next and A mirrors B from then on. This means that whatever configuration of squares A has taken, B has taken the mirror image of the same configuration first. In particular, if A was forced to take n squares in a row, then B must have taken n squares in a row at the previous move, so B would have lost before A even got to make the supposed losing move. Nice!
4 comments

September 29, 2014
Can we always find order in systems that are disordered? If so, just how large does a system have to be to contain a certain amount of order? In this video Imre Leader of the Department of Pure Mathematics and Mathematical Statistics at the University of Cambridge gives an equation free introduction to a fascinating area of maths called Ramsey theory. This talk was originally given to an audience of Year 12 Alevel maths students (aged 1617) in June this year and formed part of a mathematics enrichment day organised by the Millennium Mathematics Project with a special focus on encouraging the development of mathematical thinking. Intrigued? You can read a brief description of Ramsey theory or find out more in our more detailed article. And you can also find out how Ramsey theory gives us one of our favourite numbers. 