Plus Blog
February 21, 2008
Thursday, February 21, 2008
Recent research suggests that generalists can thrive in society, even though most theories of evolution, and even Greek philosopher Plato, argue that individuals who perform specialist tasks are more likely to succeed. Labels: Latest news posted by Plus @ 2:13 PM 0 Comments: 
February 13, 2008
Wednesday, February 13, 2008
Happy Valentines Day from PlusMathematics is the tool we use to solve our problems. But can maths uncover the
secrets behind love? Given that love is a game, and mathematical game theory can be used to find the best strategies to win at games, why not try and apply maths to love?
So here, on Valentines Day, are some Plus stories from society's most lucky in love, the mathematicians:
posted by Plus @ 11:34 AM 0 Comments: 
January 29, 2008
Tuesday, January 29, 2008
The eventful life of Lodovico FerrariLodovico Ferrari was an Italian mathematician famed for solving the quartic equation. Ferrari was born in 1522 in Bologna and at the age of 14 became the servant of Gerolamo Cardan, a celebrated Italian Renaissance mathematician, physician, astrologer and gambler. Ferrari showed mathematical promise at a young age, and at the age of 20 became a public lecturer in geometry. He was also a player in a great mathematical controversy of the time  who should get credit for the development of solutions for the cubic and quartic equations. The controversy includes another notable mathematician of his day, Nicolo Fontana Tartaglia. Tartaglia was an Italian mathematician who was the first to apply mathematics to the investigation of the paths of cannonballs. He had developed his own solutions to the cubic equations, and when Cardan heard of this achievement, nagged a reluctant Tartaglia to show him his work. He succeeded only when he challenged him to a debate and implied that through his influence he could arrange a potentially lucrative contact with the governor of Milan. Tartaglia agreed to tell Cardan his method if Cardan would swear never to reveal it and to only ever write it down in code so that even if he died, nobody would ever discover it. Cardan agreed to this, and Tartaglia enigmatically handed over his formula in the form of a poem. Several years later however, Cardan and Ferrari saw unpublished work by Scipione del Ferro who had independently devised the same solution as Tartaglia. This work was dated before the work of Tartaglia, and so they decided to break their promise and the include Tartaglia's solution in their published work. Based on Tartaglia's formula, Cardan and Ferrari found proofs for all cases of the cubic and, more impressively, solved the quartic equation  this was reportedly largely due to the work of Ferrari. Tartaglia then started a campaign of public abuse directed at Cardan and Ferrari, and whilst most of the insults washed off Cardan  who was now established as the world's leading mathematician  Ferrari wrote to Tartaglia challenging him to a public debate. Tartaglia however did not consider Ferrari as worthy of debate  it was Cardan he wanted. Ferrari and Tartaglia traded insults for over a year until 1548 when Tartaglia received an offer of a lectureship in Brescia. To establish his credentials for the post, he was asked to take part in the debate with Ferrari. Tartaglia was an experienced debater and expected to win. However, by the end of the first day, it was clear that things were not going his way and that Ferrari understood the cubic and quartic equations more thoroughly. Tartaglia decided to flee that night, with victory left to Ferrari. Ferrari's fame soared and he was inundated with offers of employment, including a request from the emperor. Ferrari was appointed tax assessor to the governor of Milan, and after transferring to the service of the church, retired as a young (aged 42) and rich man. He moved back to his home town of Bologna and in with his widowed sister Maddalena. He died in 1565 of white arsenic poisoning, most likely administered by Maddalena. Maddalena did not grieve at his funeral and having inherited his fortune, remarried two weeks later. Her new husband promptly left her with all her fortune and she died in poverty. For more information on cubic equations, see Plus articles Mathematical Mysteries: Trisecting the Angle, and Woman joins Adams Family. And for more on Ferrari, see MacTutor posted by Plus @ 4:22 PM 0 Comments: 
January 15, 2008

December 12, 2007
Wednesday, December 12, 2007
The mathematics of monopoly on More or lessMore or Less, BBC Radio 4's program that takes you on a journey through the often abused but ever ubiquitous world of numbers, has recently returned to the airways, and next Monday (17th December 4.30 pm), regular Plus contributors Rob Eastaway and John Haigh are featuring on the program discussing the maths of Monopoly. Eastaway and Haigh have written for Plus many times on a range of topics including:
Plus spoke to Eastaway about the science of Monopoly, and without giving too much away, Eastaway commented that because the "Go to jail" square is the most frequently visited sqaure on the board, the orange properties are the best investments, as players leaving jail are most likely to then land on these properties. This means you should invest in Bow Street, Marlborough and Vine Street — or in the US version, St James Place, New York Avenue or Tennessee Avenue.
1 comments
