Reply to comment

Number of perpendicular planes in n-dimensional space.

A single plane is defined by 2 perpendicular lines. Therefore, If you have n-dimensional space and thus n mutually perpendicular lines, you can make "n choose 2" (a binomial coefficient) different mutually perpendicular planes, which is equivalent to the (n-1)th triangular number, or to (n-1)n/2. It is for this reason that there is one plane in 2-d space, 3 planes in 3-d space, 6 in 4-d space, 10 in 5-d space, and so on. Might seem counterintuitive at first, but not after you invoke binomial coefficients!

Reply

  • Web page addresses and e-mail addresses turn into links automatically.
  • Allowed HTML tags: <a> <em> <strong> <cite> <code> <ul> <ol> <li> <dl> <dt> <dd>
  • Lines and paragraphs break automatically.

More information about formatting options

To prevent automated spam submissions leave this field empty.
By submitting this form, you accept the Mollom privacy policy.