Reply to comment

Finding the nine - solution

Granted that singingbanana's solution is the bare-bones needed.

Hand calcs can be reduced somewhat by observing that the progressive divisibility rule forces every second digit ( b d f h ) to be even. Corollary: the remaining five digits must be odd.

The modular 8 formula, (4f+2g+h)|8, can be simplified to (2g+h)|8 since, knowing f is even, 4f|8, and the f term drops out.

[Notation used here:( M)|N reads M is divisible by N. Equivalently (M) mod N = 0.]

The six term mod 6 formula can also be efficiently replaced by observing that any number divisible by 6 must also be divisible by 6's factors, 2 & 3. Again knowing f is even, the divisible by 2 constraint is met. The (a+b+c) terms are already defined to be divisible by 3, so the formula for 6 can be (d+e+f)|3.

The corollary for odds is useful when dealing with 4 & 8.

Reply

  • Web page addresses and e-mail addresses turn into links automatically.
  • Allowed HTML tags: <a> <em> <strong> <cite> <code> <ul> <ol> <li> <dl> <dt> <dd>
  • Lines and paragraphs break automatically.

More information about formatting options

To prevent automated spam submissions leave this field empty.
By submitting this form, you accept the Mollom privacy policy.