Author: Richard Elwes

The world we live in is strictly 3-dimensional: up/down, left/right, and forwards/backwards, these are the only ways to move. For years, scientists and science fiction writers have contemplated the possibilities of higher dimensional spaces. What would a 4- or 5-dimensional universe look like? Or might it even be true that we already inhabit such a space, that our 3-dimensional home is no more than a slice through a higher dimensional realm, just as a slice through a 3-dimensional cube produces a 2-dimensional square?

What's the nature of infinity? Are all infinities the same? And what happens if you've got infinitely many infinities? In this article Richard Elwes explores how these questions brought triumph to one man and ruin to another, ventures to the limits of mathematics and finds that, with infinity, you're spoilt for choice.
Richard Elwes continues his investigation into Cantor and Cohen's work. He investigates the continuum hypothesis, the question that caused Cantor so much grief.
Winner of the general public category. Enormous is the right word: this theorem's proof spans over 10,000 pages in 500 journal articles and no-one today understands all its details. So what does the theorem say? Richard Elwes has a short and sweet introduction.