Fibonacci number
http://plus.maths.org/content/taxonomy/term/272
enPatterns and structures
http://plus.maths.org/content/patterns-and-structures
<div class="field field-type-text field-field-author">
<div class="field-items">
<div class="field-item odd">
Rachel Thomas </div>
</div>
</div>
<div class="field field-type-filefield field-field-abs-img">
<div class="field-items">
<div class="field-item odd">
<img class="imagefield imagefield-field_abs_img" width="99" height="100" alt="" src="http://plus.maths.org/content/sites/plus.maths.org/files/abstractpics/4/29_apr_2014_-_1209/icon.jpg?1398769748" /> </div>
</div>
</div>
<div class="field field-type-text field-field-abs-txt">
<div class="field-items">
<div class="field-item odd">
<p>Patterns and structures lie at the heart of mathematics, some even say they are mathematics. But how do they help us do mathematics?</p>
</div>
</div>
</div>
<p>
"A mathematician, like a painter or a poet, is a maker of patterns. If his patterns are more permanent than theirs, it is because they are made with ideas." This much quoted line is from British mathematician G. H. Hardy's famous book, <em>A mathematician's apology</em>, written in 1940. And any mathematician, from the ancient Greeks to those working today, would agree.
</p><p><a href="http://plus.maths.org/content/patterns-and-structures" target="_blank">read more</a></p>http://plus.maths.org/content/patterns-and-structures#commentscreativityFibonacciFibonacci numberThu, 29 May 2014 09:00:08 +0000Rachel6091 at http://plus.maths.org/contentThe life and numbers of Fibonacci
http://plus.maths.org/content/life-and-numbers-fibonacci
<div class="field field-type-text field-field-author">
<div class="field-items">
<div class="field-item odd">
R.Knott and the Plus team </div>
</div>
</div>
<div class="field field-type-filefield field-field-abs-img">
<div class="field-items">
<div class="field-item odd">
<img class="imagefield imagefield-field_abs_img" width="100" height="100" alt="Icon" src="http://plus.maths.org/content/sites/plus.maths.org/files/abstractpics/4/4_nov_2013_-_1159/icon.jpg?1383566374" /> </div>
</div>
</div>
<div class="field field-type-text field-field-abs-txt">
<div class="field-items">
<div class="field-item odd">
The Fibonacci sequence – 0, 1, 1, 2, 3, 5, 8, 13, ... – is one of the most famous pieces of mathematics. We see how these numbers appear in multiplying rabbits and bees, in the turns of sea shells and sunflower seeds, and how it all stemmed from a simple example in one of the most important books in Western mathematics. </div>
</div>
</div>
<p>Fibonacci is one of the most famous names in mathematics. This would come as a surprise to Leonardo Pisano, the mathematician we now know by that name. And he might have been equally surprised that he has been immortalised in the famous sequence – 0, 1, 1, 2, 3, 5, 8, 13, ... – rather than for what is considered his far greater mathematical achievement – helping to popularise our modern number system in the Latin-speaking world.
</p><p><a href="http://plus.maths.org/content/life-and-numbers-fibonacci" target="_blank">read more</a></p>http://plus.maths.org/content/life-and-numbers-fibonacci#comments3FibonacciFibonacci numbergolden ratiohistory of mathematicslimitsequenceMon, 04 Nov 2013 12:00:00 +0000plusadmin2148 at http://plus.maths.org/contentDecoding Da Vinci: Finance, functions and art
http://plus.maths.org/content/decoding-da-vinci
<div class="field field-type-text field-field-author">
<div class="field-items">
<div class="field-item odd">
Tim Johnson </div>
</div>
</div>
<div class="field field-type-filefield field-field-abs-img">
<div class="field-items">
<div class="field-item odd">
<img class="imagefield imagefield-field_abs_img" width="100" height="100" alt="" src="http://plus.maths.org/content/sites/plus.maths.org/files/abstractpics/5/31_oct_2011_-_1115/icon.jpg?1320059721" /> </div>
</div>
</div>
<div class="field field-type-text field-field-abs-txt">
<div class="field-items">
<div class="field-item odd">
<p>Dan Brown in his book, <em>The Da Vinci Code</em>, talks about the "divine proportion" as having a "fundamental role in nature". Brown's ideas are not completely without foundation, as the proportion crops up in the mathematics used to describe the formation of natural structures like snail's shells and plants, and even in Alan Turing's work on animal coats. But Dan Brown does not talk about mathematics, he talks about a number. What is so special about this number?</p>
</div>
</div>
</div>
<div class="rightimage" style="width: 200px;"><img src="http://plus.maths.org/content/sites/plus.maths.org/files/articles/2011/davinci/fibonacci.jpg" alt="Fibonacci" width="200" height="270" /><p>Fibonacci (ca 1170 – ca 1250).</p><p><a href="http://plus.maths.org/content/decoding-da-vinci" target="_blank">read more</a></p>http://plus.maths.org/content/decoding-da-vinci#commentscontinued fractionFibonacciFibonacci numbergolden ratiomathematics and artpower seriesThu, 03 Nov 2011 12:58:56 +0000mf3445576 at http://plus.maths.org/contentThe prime number lottery
http://plus.maths.org/content/prime-number-lottery
<div class="field field-type-text field-field-author">
<div class="field-items">
<div class="field-item odd">
Marcus du Sautoy </div>
</div>
</div>
<div class="field field-type-filefield field-field-abs-img">
<div class="field-items">
<div class="field-item odd">
<img class="imagefield imagefield-field_abs_img" width="100" height="100" alt="" src="http://plus.maths.org/content/sites/plus.maths.org/files/issue27/features/sautoy/icon.jpg?1067644800" /> </div>
</div>
</div>
<div class="field field-type-text field-field-abs-txt">
<div class="field-items">
<div class="field-item odd">
Marcus du Sautoy begins a two part exploration of the greatest unsolved problem of mathematics: The <b>Riemann Hypothesis</b>. In the first part, we find out how the German mathematician Gauss, aged only 15, discovered the dice that Nature used to chose the primes. </div>
</div>
</div>
<div class="pub_date">November 2003</div>
<!-- plusimport -->
<br />
<!-- #include virtual="../../../include/gifd_here_box.html" -->
<br clear="all" />
<p><!-- FILE: include/leftfig.html --></p>
<div class="leftimage" style="width: 268px;"><img src="/issue27/features/sautoy/youngHilbert.jpg" alt="David Hilbert" width="268" height="326" />
<p>David Hilbert</p><p><a href="http://plus.maths.org/content/prime-number-lottery" target="_blank">read more</a></p>http://plus.maths.org/content/prime-number-lottery#comments27Fibonacci numberhilbert problemslogarithmprime numberRiemann hypothesisSat, 01 Nov 2003 00:00:00 +0000plusadmin2237 at http://plus.maths.org/contentThe golden ratio and aesthetics
http://plus.maths.org/content/golden-ratio-and-aesthetics
<div class="field field-type-text field-field-author">
<div class="field-items">
<div class="field-item odd">
Mario Livio </div>
</div>
</div>
<div class="field field-type-filefield field-field-abs-img">
<div class="field-items">
<div class="field-item odd">
<img class="imagefield imagefield-field_abs_img" width="100" height="100" alt="" src="http://plus.maths.org/content/sites/plus.maths.org/files/issue22/features/golden/icon.jpg?1036108800" /> </div>
</div>
</div>
<div class="field field-type-text field-field-abs-txt">
<div class="field-items">
<div class="field-item odd">
It was Euclid who first defined the <b>Golden Ratio</b>, and ever since people have been fascinated by its extraordinary properties. Find out if beauty is in the eye of the beholder, and how the Golden Ratio crosses from mathematics to the arts. </div>
</div>
</div>
<div class="pub_date">November 2002</div>
<!-- plusimport -->
<br clear="all" />
<p><i>Mario Livio is a scientist and self-proclaimed "art fanatic" who owns many hundreds of art books. Recently, he combined his passions for science and art in two popular books,</i> The Accelerating Universe<i>, which appeared in 2000, and</i> The Golden Ratio<i>, <a href="/issue22/reviews/book2/index.html">reviewed in this issue of <i>Plus</i></a>. The former book discusses "beauty" as an
essential ingredient in fundamental theories of the universe.<p><a href="http://plus.maths.org/content/golden-ratio-and-aesthetics" target="_blank">read more</a></p>http://plus.maths.org/content/golden-ratio-and-aesthetics#comments22AestheticsFibonacci numbergolden ratioFri, 01 Nov 2002 00:00:00 +0000plusadmin2213 at http://plus.maths.org/contentMaths on the tube
http://plus.maths.org/content/maths-tube
<div class="field field-type-text field-field-author">
<div class="field-items">
<div class="field-item odd">
Keith Moffatt </div>
</div>
</div>
<div class="field field-type-filefield field-field-abs-img">
<div class="field-items">
<div class="field-item odd">
<img class="imagefield imagefield-field_abs_img" width="130" height="130" alt="" src="http://plus.maths.org/content/sites/plus.maths.org/files/issue17/features/posters/icon.jpg?975628800" /> </div>
</div>
</div>
<div class="field field-type-text field-field-abs-txt">
<div class="field-items">
<div class="field-item odd">
During World Mathematical Year 2000 a sequence of posters were displayed month by month in the trains of the London Underground aiming to stimulate, fascinate - even infuriate passengers! <b>Keith Moffatt</b> tells us about three of the posters from the series. </div>
</div>
</div>
<div class="pub_date">Nov 2001</div>
<!-- plusimport -->
<br clear="all" />
<p>Tube travellers may have noticed some of the striking mathematical posters that were designed at the <a href="http://www.newton.cam.ac.uk">Newton Institute</a> for display month-by-month during World Mathematical Year 2000 in trains of the London Underground. Actually, the chance of spotting one in a single tube journey was about one in a hundred, so if you did see one, you could truly say
"This was my lucky day".</p><p><a href="http://plus.maths.org/content/maths-tube" target="_blank">read more</a></p>http://plus.maths.org/content/maths-tube#comments17advection-diffusion equationbutterfly effectchaosdifferential equationFibonacci numberfluid mechanicsgolden ratioLorenz equationsmeteorologystrange attractorFri, 01 Dec 2000 00:00:00 +0000plusadmin2193 at http://plus.maths.org/contentSelf-similar syncopations: Fibonacci, L-systems, limericks and ragtime
http://plus.maths.org/content/self-similar-syncopations-fibonacci-l-systems-limericks-and-ragtime
<div class="field field-type-text field-field-author">
<div class="field-items">
<div class="field-item odd">
Kevin Jones </div>
</div>
</div>
<div class="field field-type-filefield field-field-abs-img">
<div class="field-items">
<div class="field-item odd">
<img class="imagefield imagefield-field_abs_img" width="130" height="130" alt="" src="http://plus.maths.org/content/sites/plus.maths.org/files/issue10/features/syncopate/icon.jpg?946684800" /> </div>
</div>
</div>
<div class="field field-type-text field-field-abs-txt">
<div class="field-items">
<div class="field-item odd">
<strong>Kevin Jones</strong> investigates the links between music and mathematics, throwing in limericks, Fibonacci and Scott Joplin along the way. <i>Plus</i> is proud to present an extended version of his winning entry for the THES/OUP 1999 Science Writing Prize. </div>
</div>
</div>
<div class="pub_date">January 2000</div>
<!-- plusimport -->
<br />
<table border="0" width="100%">
<tr>
<td align="center"><em>There was an Old Man with a beard,<br />
Who said, "It is just as I feared! -<br />
Two Owls and a Hen,<br />
Four Larks and a Wren,<br />
Have all built their nests in my beard!"<p><a href="http://plus.maths.org/content/self-similar-syncopations-fibonacci-l-systems-limericks-and-ragtime" target="_blank">read more</a></p>http://plus.maths.org/content/self-similar-syncopations-fibonacci-l-systems-limericks-and-ragtime#comments10FibonacciFibonacci numbermathematics and musicrecursionrhythmself-similaritySat, 01 Jan 2000 00:00:00 +0000plusadmin2163 at http://plus.maths.org/contentA postcard from Italy
http://plus.maths.org/content/postcard-italy
<div class="field field-type-text field-field-author">
<div class="field-items">
<div class="field-item odd">
Eugen Jost </div>
</div>
</div>
<div class="field field-type-filefield field-field-abs-img">
<div class="field-items">
<div class="field-item odd">
<img class="imagefield imagefield-field_abs_img" width="110" height="110" alt="" src="http://plus.maths.org/content/sites/plus.maths.org/files/issue9/features/art2/icon.jpg?936140400" /> </div>
</div>
</div>
<div class="field field-type-text field-field-abs-txt">
<div class="field-items">
<div class="field-item odd">
<strong>Eugen Jost</strong> is a Swiss artist whose work is strongly influenced by mathematics. He sent us this Postcard from Italy, telling us about his work and the important roles that nature and numbers play in it. </div>
</div>
</div>
<div class="pub_date">September 1999</div>
<!-- plusimport -->
<p><em><a href="http://www.datacomm.ch/jostechk/">Eugen Jost</a> is a Swiss artist, born in Zürich, whose work is strongly influenced by mathematics.</em></p>
<p><em>His early career was a technical one: after taking an apprenticeship with Siemens-Albis Telecommunications and working as a technical designer at Bobst et fils in Lausanne, he went on to Teacher Training College in Bern, later becoming a teacher and an instructor in Matten/Interlaken and Spiez.</em></p><p><a href="http://plus.maths.org/content/postcard-italy" target="_blank">read more</a></p>http://plus.maths.org/content/postcard-italy#comments9Fibonacci numberinfinitypalindromeparadoxpuzzlesundialsymmetrytrigonometryTue, 31 Aug 1999 23:00:00 +0000plusadmin2390 at http://plus.maths.org/content