entropy

To create energy from information you would need to break the second law of thermodynamics — that's impossible in the real world, but could theories that do break it shed light on why nature is the way it is?

In the latest online poll of our Information about information project you told us that you'd like an answer to this question. We asked Seth Lloyd, an expert on information at the Massachusetts Institute of Technology, and here is an answer. We also bring you two related articles from FQXi who are our partners on this project. Happy reading!

Fields medallist Cédric Villani talks to us about our solar system, chaos, and what it's like being a mathematical superstar.

The ability to see order in chaos has won the mathematician Yakov G. Sinai the 2014 Abel Prize.

There's no doubt that information is power, but could it be converted into physical energy you could heat a room with or run a machine on? In the 19th century James Clerk Maxwell invented a hypothetical being — a "demon" — that seemed to be able to do just that. The problem was that the little devil blatantly contravened the laws of physics. What is Maxwell's demon and how was it resolved?

This podcast comes to you from a conference on the nature of time. We talk to philosophers of physics Jeremy Butterfield and David Wallace, as well as the eminent Roger Penrose about the puzzle time poses to physicists and what it has to do with the Big Bang and the second law of thermodynamics.

What would you think if the nice café latte in your cup suddenly separated itself out into one half containing just milk and the other containing just coffee? Probably that you, or the world, have just gone crazy. There is, perhaps, a theoretical chance that after stirring the coffee all the swirling atoms in your cup just happen to find themselves in the right place for this to occur, but this chance is astronomically small.

What would you think if the nice café latte in your cup suddenly separated itself out into one half containing just milk and the other containing just coffee? Probably that you, or the world, have just gone crazy. There is, perhaps, a theoretical chance that after stirring the coffee all the swirling atoms in your cup just happen to find themselves in the right place for this to occur, but this chance is astronomically small.

With online socialising and alternative realities like Second Life it may seem as if reality has become a whole lot bigger over the last few years. In one branch of theoretical physics, though, things seem to be going the other way. String theorists have been developing the idea that the space and time we inhabit, including ourselves, might be nothing more than an illusion, a hologram conjured up by a reality which lacks a crucial feature of the world as we perceive it: the third dimension. Plus talks to Juan Maldacena to find out more.
A biologist has developed a blood test for detecting a certain minor abnormality in infants. Obviously if you have blood samples from 100 children, you could find out which children are affected by running 100 separate tests. But mathematicians are never satisfied by the obvious answer. Keith Ball uses information theory to explain how to cut down the number of tests significantly, by pooling samples of blood.