Benford's Law
http://plus.maths.org/content/taxonomy/term/938
enDoes the Iranian election stand up to statistics?
http://plus.maths.org/content/does-iranian-election-stand-statistics
<div class="field field-type-filefield field-field-abs-img">
<div class="field-items">
<div class="field-item odd">
<img class="imagefield imagefield-field_abs_img" width="100" height="100" alt="" src="http://plus.maths.org/content/sites/plus.maths.org/files/latestnews/may-aug09/iran/icon.jpg?1246921200" /> </div>
</div>
</div>
<div class="field field-type-text field-field-abs-txt">
<div class="field-items">
<div class="field-item odd">
A statistical test applied to the election results </div>
</div>
</div>
<div class="pub_date">07/07/2009</div>
<!-- plusimport --><br clear="all"></br>
<!-- END OF FILE: newinclude/news_header.html -->
<!-- FILE: include/rightfig.html -->
<div class="rightimage" style="width: 400px;"><img src="/latestnews/may-aug09/iran/protests.jpg" alt="Protests in Teheran" width="400" height="261" />
<p>Protests against the Iranian election results on the streets of Teheran in June 2009. Photo: <a href='http://www.flickr.com/people/14438701@N00'>Shahram Sharif</a>.</p><p><a href="http://plus.maths.org/content/does-iranian-election-stand-statistics" target="_blank">read more</a></p>http://plus.maths.org/content/does-iranian-election-stand-statistics#commentsBenford's LawelectionstatisticsMon, 06 Jul 2009 23:00:00 +0000plusadmin2529 at http://plus.maths.org/contentLooking out for number one
http://plus.maths.org/content/looking-out-number-one
<div class="field field-type-text field-field-author">
<div class="field-items">
<div class="field-item odd">
Jon Walthoe </div>
</div>
</div>
<div class="field field-type-filefield field-field-abs-img">
<div class="field-items">
<div class="field-item odd">
<img class="imagefield imagefield-field_abs_img" width="110" height="110" alt="" src="http://plus.maths.org/content/sites/plus.maths.org/files/issue9/features/benford/icon.jpg?936140400" /> </div>
</div>
</div>
<div class="field field-type-text field-field-abs-txt">
<div class="field-items">
<div class="field-item odd">
You might think that if you collected together a list of naturally-occurring numbers, then as many of them would start with a 1 as with any other digit, but you'd be quite wrong. <b>Jon Walthoe</b> explains why Benford's Law says otherwise, and why tax inspectors are taking an interest. </div>
</div>
</div>
<div class="pub_date">September 1999</div>
<!-- plusimport --><br clear="all"></br>
<p>So, here's a challenge. Go and look up some numbers. A whole variety of naturally-occuring numbers will do. Try the lengths of some of the world's rivers, or the cost of gas bills in Moldova; try the population sizes in Peruvian provinces, or even the figures in Bill Clinton's tax return. Then, when you have a sample of numbers, look at their first digits (ignoring any leading zeroes). Count
how many numbers begin with 1, how many begin with 2, how many begin with 3, and so on - what do you find?</p><p><a href="http://plus.maths.org/content/looking-out-number-one" target="_blank">read more</a></p>http://plus.maths.org/content/looking-out-number-one#comments9Benford's Lawdistribution of digitsfraud detectionlogarithmrandomnessscale invariancestatisticsuniform distributionTue, 31 Aug 1999 23:00:00 +0000plusadmin2391 at http://plus.maths.org/content