
© 1997−2009, Millennium Mathematics Project, University of Cambridge.
Permission is granted to print and copy this page on paper for non−commercial use. For other uses, including
electronic redistribution, please contact us.

May 1998
Features

What computers can't do

by Mike Yates

Alan Turing is described by Professor P.N. Furbank, overall editor of Turing's Collected Works[1], as "one of
the leading figures of twentieth−century science".

Figure 1: Alan Turing.

Sixty years ago his most famous paper was published, introducing the idea of a Universal Computing
Machine ten years before the first stored programme digital computer actually ran.

This was only one of a string of varied achievements. It is known now that his work on deciphering the
German Enigma code at Bletchley Park during the Second World War made a significant contribution to
winning that war, though this remained unknown to his closest friends until after his tragic death from taking
potassium cyanide in 1954.

What computers can't do

What computers can't do 1

http://www.addthis.com/bookmark.php


Figure 2a: The Enigma machine. (Image source : AGN, University of Hamburg, Copyright 1995, Morton
Swimmer).

Turing's wartime work played a significant role in marking out the importance of mechanical computing
facilities. Although much of the hack work was done mechanically, an enormous team of human computers
was also involved.

Figure 2b: Close−up of the coding rotors.

Another feature of his wartime work was its use of probability theory. Some of Turing's work in this area was
also highly innovative. It was recognised after the war through the published work of his then assistant (later
Professor) Jack Good, without reference to its wartime uses.

Turing's interest in computing continued after the war, when he worked at NPL (National Physical
Laboratory) on the development of a stored−programme computer (the ACE or Automatic Computing
Engine). In 1948 he moved to Manchester, where the first stored programme digital computer actually ran that
year.

Although his connection with that real computer was at best tenuous, he made significant contributions to
computing theory, in particular artificial intelligence (the Turing test), computer architecture (the ACE) and
software engineering. It is some measure of his contribution that the prestigious Turing Prize in computing
science is named after him.

What computers can't do

What computers can't do 2

http://agn-www.informatik.uni-hamburg.de/


In the Turing test for machine intelligence, an observer has to distinguish between the machine and a human
by asking a series of questions through a computer link.

The halting problem

As an example of his thought let's look at a proof that there is no way of telling in general once a computer
has embarked on a calculation whether that calculation will terminate in an answer. This problem is known as
the "Halting Problem for Turing machines" and was first proved in the 1937 paper[2] in which he introduced
his machines.

To lead up to that proof, it is necessary to say a few things about counting and lists or sequences. We say that
the elements of a set can be counted if they can be listed in a single sequence.

The set of natural numbers can be listed 0, 1, 2, 3,... and so on ad infinitum − no problem. To list all the
integers, positive and negative in a single sequence, you can write 0, 1, −1, 2, −2, 3, −3,... and so on, again no
problem.

The fractions take a bit more work. It is usual to do this in 2D, using a table or matrix. Let's just look at the
positive ones − it extends to include the negative ones as with the integers.

Figure 3: Table of fractions. The fractions can be counted by tabulating them and then counting them along
the diagonals, shown in blue.

What computers can't do

The halting problem 3



There are a lot of repetitions − all the diagonal elements are equal for a start − so this algorithm is a little
wasteful. But it does the job. Carry it on for ever and every fraction will be there somewhere in the 2D matrix.
To write the matrix out in a single sequence, work up and down the SW to NE diagonals to obtain:

1, 1/2, 2, 1/3, 2/2, 3, 1/4, 2/3, 3/2, 4,...

Next, we come to a very famous theorem, Cantor's Theorem, which says that the real numbers are not
countable in this way. The set of real numbers include numbers like Pi (3.14159...) which cannot be written as
one whole number over another.

Proof of Cantor's Theorem

Let's just show that we cannot count all the binary sequences, in other words, infinite sequences of 0s and 1s.

Suppose we could. We can label each binary sequence B1, B2, B3,... ad infinitum. We will now obtain a
contradiction. Let's list the elements of each sequence in a table or matrix as before.

Figure 4: Table of binary sequences. A possible list of binary sequences, the sequence D is constructed by
inverting the items on the diagonal, shown in blue.

Now define a binary sequence, D, by choosing a 0 in the first column if B1 has a 1 in that column and 1 if B1

has a 0 in that column. We then choose a 0 in the second column if B2 has a 1 in that column and 1 if it has a 0
and so on. The resulting binary sequence, D, cannot be in the list because if it were it would have to match
one of the B sequences, say Bn for some n. But we have just deliberately made sure that the nth column of D
differs from Bn. Contradiction.

No matter how we list the binary sequences we can always find a new sequence, D, which is not in the list.

This procedure is called diagonalising. As you can see, we have given a simple rule for it, so that given a rule
for counting out a list of binary numbers then we'd have a rule for computing this diagonal binary number
which isn't in the list.

Turing's argument

Finally, let's sketch how Turing's argument (related to an even more famous bit of reasoning by Kurt Gin
1931) takes this argument a big stage further.

The proof sketched here is not Turing's original one, but related. Much of Turing's classic paper is taken up
with describing his concept of a computing machine and why it is as general as can be. Anything that can be

What computers can't do

Proof of Cantor's Theorem 4



computed according to a finite list of rules, can be computed by one of his machines.

Briefly, a Turing machine can be thought of as a black box, which performs a calculation of some kind on an
input number. If the calculation reaches a conclusion, or halts then an output number is returned. Otherwise,
the machine theoretically just carries on forever. There are an infinite number of Turing machines, as there are
an infinite number of calculations that can be done with a finite list of rules.

One of the consequences of Turing's theory is that there is a Universal Turing machine, in other words one
which can simulate all possible Turing machines. This means that we can think of the Turing machines as
countable and listed T1, T2,... by a Universal Machine through a sort of alphabetical listing. Turing used this
to describe his own version of GTheorem: that there is no mechanical procedure for telling whether a Turing
machine will halt on a given input: the Halting Problem.

The unsolvability of the halting problem

Let's represent the result of using the nth Turing machine, Tn on the input i as Tn(i). Suppose that there was a
rule or procedure for deciding whether or not Tn(i) halts for all values of n and i.

Figure 5: A halting rule could be used to make a table of the output Tn(i), using a question mark to represent
calculations which never halt. This table is only illustrative, its contents have not been chosen with any
particular ordering of Turing machines in mind.

But then by a similar diagonalising procedure to the one above, we can define a new Turing machine, say D,
which will halt for all inputs and return the following output for input i:

0 if Ti(i) does not halt.
Ti(i)+1 if Ti(i) does halt.

But this machine D must be one of those machines, in other words it must be Td for some d. However, we just
defined it to give a different answer from Td with input d. Contradiction.

The extra sophistication here over the original diagonalising argument lies in (1) all the listing done is itself
computable and (2) any machine Tn may or may not halt in carrying out its computations. None of this enters
into Cantor's original diagonal argument. This sort of computable diagonalising was first used in the
pioneering work done by GTuring and others in the decade before the Second World War, and has remained
an important technique. The really hard work lies in formulating the various definitions of computability, but

What computers can't do

The unsolvability of the halting problem 5



that is another story!

What is life?

Figure 6a: Turing's meticulously hand−drawn sunflower.

In the closing years before his death, Turing was working on something entirely different, something which
had been close to his heart since his school days − the origin of biological form − Morphogenesis.

Figure 6b: A close−up section.

How could simple cells know how to grow into relatively enormous structured forms? The crucial idea that
genetic information could be stored at molecular level had been deduced in Schr1943 lecture What is Life?,
and Crick and Watson were currently busy in the uncovering of that secret, through the structure of DNA.
Given the production of molecules by the genes, Turing was looking for an explanation of how a chemical
soup could possibly give rise to a biological pattern.

The first main goal of his theory was an attempt on the classic problem of Phyllotaxis, the arrangement of
leaves on a plant. One of the features of this subject which had been known since Kepler's time was the
natural occurrence of the Fibonacci series 1, 2, 3, 5, 8, 13, 21,... So it was already established that
mathematics had a role to play. (For more about the Fibonacci series see " The life and numbers of Fibonacci"
in Issue No 3.)

Turing also proposed that the pattern of markings on animals followed mathematical rules due to chemical
signals. This idea had mixed fortunes, though recently biologists' interest has been re−vitalised. Using his
theory, researchers in Japan have observed Turing's predicted changes in the patterns on zebra−striped fish.

Further reading

Glance at the web page below for further details of the Collected Works

What computers can't do

What is life? 6



The Alan Turing Bibliography, assembled by Andrew Hodges.• 

The definitive work on his life (a compelling read) is:

Andrew Hodges, Alan Turing: The Enigma, hardback version − Burnett books, 1983, paperback
version − Vintage Books, 1992.

• 

A new angle on Turing can be found in:

Andrew Hodges, Turing, in the Series The Great Philosophers, Phoenix 1997.• 

A guiding force from his schooldays was:

D'Arcy Wentworth Thompson, On growth and Form, Cambridge University Press. 1917 (new edition
1942).

• 

References

[1] Collected Works of A. M. Turing edited by P.N. Furbank, North−Holland, Elsevier Science.

[2] On Computable Numbers, with an application to the Entscheidungsproblem, Proceedings London
Mathematical Society (series 2) vol 42, 1936−7, pp.230−265.

The author

Mike Yates is an Emeritus Professor of the University of Manchester, and an Honorary Professor of the
University of Wales at Bangor.

Plus is part of the family of activities in the Millennium Mathematics Project, which also includes the NRICH
and MOTIVATE sites.

What computers can't do

References 7

http://www.turing.org.uk/turing/biblio.html
http://mmp.maths.org
http://nrich.maths.org
http://motivate.maths.org
http://nrich.maths.org
http://motivate.maths.org

