Last October, two mathematicians won £1m when it was revealed that they were the first to solve the Eternity jigsaw puzzle. It had taken them six months and a generous helping of mathematical analysis. Mark Wainwright meets the pair and finds out how they did it.
Arguably, the exponential function crops up more than any other when using mathematics to describe the physical world. In the first of two articles on physical phenomena which obey exponential laws, Ian Garbett discusses light attenuation - the way in which light decreases in intensity as it passes through a medium.
Why can't human beings walk as fast as they run? And why do we prefer to break into a run rather than walk above a certain speed? Using mathematical modelling, R. McNeill Alexander finds some answers.
Sometimes a mathematical object can be so big that, however disorderly we make the object, areas of order are bound to emerge. Imre Leader looks at the colourful world of Ramsey Theory.

The paradoxes of the philosopher Zeno, born approximately 490 BC in southern Italy, have puzzled mathematicians, scientists and philosophers for millennia. Although none of his work survives today, over 40 paradoxes are attributed to him which appeared in a book he wrote as a defense of the philosophies of his teacher Parmenides.

Actuarial science began as the place where two branches of mathematics meet: compound interest and observed mortality statistics. Financial planning for the future is therefore rooted firmly in the past. John Webb takes us through some of the mathematics involved, introducing us to some of the colourful characters who led the way.
A brief look at Emmy Noether's challenging journey to become one of the twentieth century's great mathematicians.
One of the most striking and powerful means of presenting numbers is completely ignored in the mathematics that is taught in schools, and it rarely makes an appearance in university courses. Yet the continued fraction is one of the most revealing representations of many numbers, sometimes containing extraordinary patterns and symmetries. John D. Barrow explains.