Articles

Cutting the threads of the spacetime fabric and reinstating the aether could lead to a theory of quantum gravity.

To understand how spacetime might have emerged in the early cosmos we need to heat up the equations, and thaw the space and time dimensions.

The number pi can be expressed beautifully in terms of infinite sums. For practical purposes though, these sums are rather disappointing: they converge slowly, so you need to sum a large number of terms to get accurate estimates of pi. Here's a clever way to make them converge faster.

Would you stake your fortune on a 100 to 1 outsider? Probably not. But what if, somewhere in a parallel universe, the straggling nag does come in first? Would the pleasure you feel in that universe outweigh the pain you feel in the one in which you've lost? Questions not dissimilar to this one occupy physicists and for entirely respectable reasons.

In the previous article we explored how a clever argument involving gambling makes the idea that there are parallel universes more credible. But does it really?

Hugh Everett III is the father of the many-worlds interpretation of quantum mechanics. He published the idea in his PhD thesis but died before it gained the recognition it deserves. This article gives an insight into Everett's difficult life.

Are there parallel universes? Universes in which, rather than reading this article, you are still asleep; in which you are happier, unhappier, richer, poorer, or even dead? The answer is "possibly". It's a controversial claim but one that has won more and more followers over the last few decades.

Mathematicians and psychologists don't cross paths that often and when they do you wouldn't expect it to involve an (apparently) unassuming puzzle like the Tower of Hanoi. Yet, the puzzle holds fascination in both fields.