## Articles

In the 1920s the Austrian physicist Erwin Schrödinger came up with what has become the central equation of quantum mechanics. It tells you all there is to know about a quantum physical system and it also predicts famous quantum weirdnesses such as superposition and quantum entanglement. In this, the first article of a three-part series, we introduce Schrödinger's equation and put it in its historical context.

In the previous article we introduced Schrödinger's equation and its solution, the wave function, which contains all the information there is to know about a quantum system. Now it's time to see the equation in action, using a very simple physical system as an example. We'll also look at another weird phenomenon called quantum tunneling.

Few things in nature are as dramatic, and potentially dangerous, as ocean waves. The impact they have on our daily lives extends from shipping to the role they play in driving the global climate. From a theoretical viewpoint water waves pose rich challenges: solutions to the equations that describe fluid motion are elusive, and whether they even exist in the most general case is one of the hardest unanswered questions in mathematics.

When the mathematician AK Erlang first used probability theory to model telephone networks in the early twentieth century he could hardly have imagined that the science he founded would one day help solve a most pressing global

problem: how to wean ourselves off fossil fuels and switch to renewable energy sources.

Many people's impression of mathematics is that it is an ancient edifice built on centuries of research. However, modern quantitative finance, an area of mathematics with such a great impact on all our lives, is just a few decades old. The Isaac Newton Institute quickly recognised its importance and has already run two seminal programmes, in 1995 and 2005, supporting research in the field of mathematical finance.

*god particle*, the Higgs boson is said to have given other particles their mass. But how did it do that? In this two-part article we explore the so-called

*Higgs mechanism*, starting with the humble bar magnet and ending with a dramatic transformation of the early Universe.

In the first part of this article we explored Landau's theory of phase transitions in materials such as magnets. We now go on to see how this theory formed the basis of the Higgs mechanism, which postulates the existence of the mysterious Higgs boson and explains how the particles that make up our Universe came to have mass.

John Barrow gives us an overview, from Aristotle's ideas to Cantor's never-ending tower of mathematical infinities, and from shock waves to black holes.