Arguably, the exponential function crops up more than any other when using mathematics to describe the physical world. In the first of two articles on physical phenomena which obey exponential laws, Ian Garbett discusses light attenuation - the way in which light decreases in intensity as it passes through a medium.
Sometimes a mathematical object can be so big that, however disorderly we make the object, areas of order are bound to emerge. Imre Leader looks at the colourful world of Ramsey Theory.
Actuarial science began as the place where two branches of mathematics meet: compound interest and observed mortality statistics. Financial planning for the future is therefore rooted firmly in the past. John Webb takes us through some of the mathematics involved, introducing us to some of the colourful characters who led the way.
Emmy Noether, pioneering female mathematician, died 80 years ago.
One of the most striking and powerful means of presenting numbers is completely ignored in the mathematics that is taught in schools, and it rarely makes an appearance in university courses. Yet the continued fraction is one of the most revealing representations of many numbers, sometimes containing extraordinary patterns and symmetries. John D. Barrow explains.
Those who understand compound interest are destined to collect it. Those who don't are doomed to pay it - or so says a well-known source of financial advice. But what is compound interest, and why is it so important? John H. Webb explains.
Underlying our vast global telecommunications networks are codes: formal schemes for representing information in machine-readable and transmissible formats. Kona Macphee examines the prefix property, one of the important features of a good code.
Kevin Jones investigates the links between music and mathematics, throwing in limericks, Fibonacci and Scott Joplin along the way. Plus is proud to present an extended version of his winning entry for the THES/OUP 1999 Science Writing Prize.