You might think that if you collected together a list of naturally-occurring numbers, then as many of them would start with a 1 as with any other digit, but you'd be quite wrong. Jon Walthoe explains why Benford's Law says otherwise, and why tax inspectors are taking an interest.
Images based on Lyapunov Exponent fractals are very striking. Andy Burbanks explains what Lyapunov Exponents are, what the much misunderstood phenomenon of chaos really is, and how you can iterate functions to produce marvellous images of chaos from simple mathematics.
For millennia, puzzles and paradoxes have forced mathematicians to continually rethink their ideas of what proofs actually are. Jon Walthoe explains the tricks involved and how great thinkers like Pythagoras, Newton and Gödel tackled the problems.
Almost everyone reading this article has no doubt encountered pictures from the Mandelbrot Set. Their appeal is not limited to the mathematician, and their breathtaking beauty has found its way onto posters, T-shirts and computers everywhere. Yet what is a fractal?

You may have seen Foucault's pendulum. There's one in the Science Museum in London (part of the National Museum of Science and Industry), and there are many more in various locations around the UK (for instance, in Glasgow) and the world (including one at the United Nations Headquarters and a famous example at Le Panthéon in Paris).

  • New in this issue
  • Ever-increasing standards: a problem of communication?