## Plus Blog

May 26, 2015
On May 23rd John Nash sadly died in a car crash, along with his wife Alicia. To the wider world Nash was famous as the main character of the book and film The Abel Prize 2015: All wrapped up — This article explores Nash's work in geometry and differential equations, which won him a share of the Abel Prize 2015. If we all go for the blonde — A gentle introduction to some game theory, based on a scene from the film Game theory and the Cuban missile crisis — A fascinating application of game theory, including the concept of a To find out more about the life and work of John Nash read his biography on the MacTutor History of Mathematics archive. |

April 21, 2015
Barrow's new book. Ever wondered why diamonds sparkle? Or why an egg is egg shaped? John D. Barrow, mathematician, cosmologist and boss of The talk is from 11am to 12pm at the City Library in Bradford and admission is £6. You can book tickets here. |

April 1, 2015
You do modular arithmetic several times every day when you are thinking about time. Imagine, for example, you're going on a train trip at 11pm that lasts three hours. What time will you arrive? Not at 11+3 = 14 o'clock, but at 2 o'clock in the morning. That's because, on a 12-hour clock, you start counting from the beginning again after you get to 12. (On a 24-hour clock, you start again after you get to 24.) So, on a 12-hour clock you have: 4 + 9 = 1, and so on. When you are subtracting hours, you do the same but backwards:
4 - 7 = 9
You could play the same game using other numbers, apart from 12 and 24, to define your cycle. For example, in modular arithmetic
4 + 2 = 1
These sums can be a little tedious to work out if you're counting on your fingers, but luckily there is a general method. Let's say you're doing arithmetic modulo some natural number This also works when -3 = (-1) x 12 + 9, so the remainder is 9. Therefore -3 modulo 12 is equal to 9. (If you use the modulus function in some computer languages you have to be a little careful though, as some return a different value for negative numbers.) If you want to add or subtract two numbers module some natural number
There is clearly something very cyclical about modular arithmetic. Whatever number |

March 27, 2015
One way to start getting your head around groups, those slightly scary abstract structures that belong to the field of algebra, is to think of a 12-hour clock. You can add hours on this clock, for example 2 o'clock + 4 hours = 6 o'clock and so on. One thing to notice here is that however many hours you
add, the answer is always going to be a number between 1
and 12. In this sense, addition on a 12-hour clock is Another thing to notice is that adding 12 hours gets
you back to where you started (it's the same as doing nothing): for any starting time This is why you could equally well write 0 for the number 12 in our clock-world. A third interesting feature is that when you have added some number
1 + 7 = 8. and then adding another 12 - 7 = 5 hours gives 8 + 5 = 1. So adding Taking a small step into abstraction, we can describe our 12-hour
arithmetic as follows. We have a set - Whenever you add two elements of the set
*S*the result is also an element of*S*(addition is closed). - There is an element of
*S*(in our case the number 12), such that when you add that element to any other element*a*of*S*, the result is*a*. This element is called the*identity*of*S*. - For every element
*a*of*S*there is another element*b*of*S*, so that*a*+*b*is equal to the identity of*S*. The element*b*is called the*inverse*of*a*. (In the clock example the inverse of*a*is 12 -*a*.)
There is also a fourth rule satisfied by our set and operation: - For three elements
*a*,*b*and*c*of*S*we have (*a*+*b*) +*c*=*a*+ (*b*+*c*). In other words, it doesn't matter whether you add the third number to the sum of the first two, or whether add the sum of the last two numbers to the first number.
Move the slider to rotate the 12-gon. There are many other structures that also satisfy these rules. As an
example, think of a regular 12-gon, as the one pictured on the left. You can rotate this shape clockwise around its centre by 30 degrees and what you end up with is the same shape as the one you started with. The rotation is a This structure forms a group. Addition is closed because when you follow one clockwise rotation through a multiple of 30 degrees by another, the result is also a clockwise rotation through a multiple of 30 degrees. There's also an identity element, namely the rotation through 360 degrees. For every rotation there is an inverse rotation, so that combining the two is the same as doing the identity rotation. For example, the inverse of the rotation through 30 degrees is the rotation through 330 degrees. In general, a It's interesting to note that two groups can consist of
different objects and involve different operations but still have the
same structure. By an unbelievably lucky coincidence, the two groups we have seen so far are an example of this. In our clock face example above, adding one hour corresponds to turning the clock hand clockwise through a twelfth of a turn — that's 30 degrees. Adding This table represents a group called the This is why it can make sense to think of a group, not as made up of rotations or numbers or some other explicit type of objects, but as a collection of abstract objects (we can use letters to denote these objects) that combine
in a particular way under the binary operation. You can keep track of how they combine in a table, such as the one on the left. To see the result of the sum
The group described by this table is known as the Klein 4-group. It's isomorphic to the symmetry group of a rectangle, writing |

March 26, 2015
In our Researching the unknown project we explored what physicists at Queen Mary University of London get up to. As part of the project the designer Charles Trevelyan produced these four beautiful posters, which are our images of the week. Feel free to download and print them out, to adorn your classroom, bedroom or wherever you'd like to see them! Simply click on the images to download a pdf. This poster accompanies our article From dust to us. This poster accompanies our article String theory: From Newton to Einstein and beyond. This poster accompanies our article What is cosmology? This poster accompanies our article Life after the Higgs boson. Click here to see previous images of the week. |

March 18, 2015
A solar eclipse observed in Australia in 2012. Image: Davidfntau. On Friday March 20, between around 9:25 GMT and 10:41 GMT, people in the UK will be able to witness a partial eclipse of the Sun! It's the first one since the total eclipse in 1999 and there won't be another one until 2026. A solar eclipse occurs when the Moon moves in front of the Sun, blotting parts of it out and casting its shadow on the Earth. Some parts on the Earth will see a total eclipse, in which the Moon completely blocks the Sun, giving a great view of its outer atmosphere called the On Friday only a narrow path a few hundred kilometres wide will see a total eclipse. The only two landmasses in that path are the Faroe Islands and the arctic archipelago of Svalbard. In the UK the Sun will only be partially obscured to varying degrees: Edinburgh will see 93% of the Sun blotted out, Lerwick in the Shetland Isles 97%, and London 85%. In London the eclipse will start at 8:25GMT, peak at 9:31GMT and end at 10:41. Times vary slightly in other parts of the UK, with things happening earlier the further West or South you are. The geometry of an eclipse. In the region called the But even when the eclipse is only partial, there are still interesting things to look out for. You might see dark spots on the Sun — sunspots — which are caused by the magnetic field of the Sun dimming its light output. You might also be able to observe the outline of the Moon's surface, with its mountains and valleys. If you're somewhere where the sunlight passes through tree foliage, you'll see lots of images of the eclipse projected on the ground and other things around you, as the holes in the foliage act as pin hole cameras. Pinhole images on a car during the 1998 eclipse in Guadeloupe. It's really important that you Now all we need is a clear sky! |