Plus Blog

October 6, 2009
Tuesday, October 06, 2009

Getting physical with maths

There's a significant intersection between sport fandom and science geekdom, and to address it, John D. Barrow, Professor of Mathematical Sciences at the University of Cambridge, will give a free public talk on physics and sport at the Cavendish Laboratory in Cambridge. Barrow will look at some applications of physics and simple mathematics to a variety of sports, including aspects of weightlifting, rowing, throwing, jumping, drag car racing, balance sports, and track athletics. He'll also explore some of the paradoxical systems of judging used in ice skating, and the effects of latitude and air resistance on some performances.

The talk will take place on the 13th of October at 6pm in the Pippard lecture theatre at the Cavendish Laboratory, Madingley Road, Cambridge.

posted by Plus @ 9:53 AM


At 5:40 AM, Blogger westius said...

Do you know if this talk will be recorded? Would be great to listen to.

October 6, 2009
Tuesday, October 06, 2009

Are you a winner?

If you're between 11 and 18, live in the UK and have just completed an interesting maths, science, engineering, or technology project, then why not enter the National Science and Engineering Competition?

The best entries will be invited to present their project at the Big Bang: UK Young Scientists’ and Engineers’ Fair, in Manchester in March 2010. You’ll have your own stand to show off all your hard work to over 13,000 scientists, engineers, students, parents, employers, teachers and celebrities. Plus you may even be chosen to face a VIP panel in the competition finals.

There are over £50,000 in prizes up for grabs, including cash awards and trips abroad. And entrants in the senior category could be crowned the UK Young Scientist of the Year or the UK Young Engineer of the Year.

It doesn't matter if your project has already been entered into another competition, you're still eligible, but hurry up, the closing date is October 30th!

The image above shows last year's winners Peter Hatfield (left) and Chris Jefferies (right).

posted by Plus @ 3:29 PM


September 30, 2009
Wednesday, September 30, 2009

Maths is the new black

We at Plus have always known that maths is beautiful, but now even the most aesthetic of worlds, fashion, is taking note. Last week in The Independent, Professor Sandy Black, from the Centre for Fashion Science, London College of Fashion, explained how her mathematical background has enabled her to create complex and unique knitted designs, selling in the most prestigious stores in London, New York and Tokyo.

Black also wrote about some of the exciting future possibilities resulting from weaving together science and fashion. Digital body scanning might not only produce made-to-measure clothes, but might even mean you never have to enter a cramped changing room again and instead virtually check the fit of those new jeans. Wonderland, a project funded by EPSRC that brings together designers and chemists, has created dresses that dissolve in water and packaging that can be turned into a gel used to grow seeds. You can read more in her article.

And if you can't wait for your mathematical fashion, maths has even made it into the Selfridges window display, as photographed last week by Dr Brian Stewart.

Read more about fashion in Plus.

posted by Plus @ 3:19 PM


At 3:45 PM, Blogger Paul Clapham said...

The links to your images have the wrong domain name on them. I don't see them in my browser because my proxy server won't go to port 2004. works perfectly well though.

At 10:31 AM, Anonymous The Plus Team said...

Thanks for pointing this out, Paul, we have fixed it!

September 29, 2009
Tuesday, September 29, 2009

As part of our celebration of the International Year of Astronomy 2009 we brought you the article How does gravity work?, in which Bangalore Sathyaprakash takes us from Newton's theory of gravitation to Einstein's general theory of relativity. Now hear Sathyaprakash explain gravity in his own words in this podcast.

Listen to the podcast.

If this has whetted your appetite for astronomy, then why not take part in our current online poll to nominate the next question we'll put to the experts.

Labels: ,

posted by Plus @ 10:29 AM


September 29, 2009
Tuesday, September 29, 2009

In our fourth online poll to find out what Plus readers would most like to know about the Universe you told us that you'd like to find out how gravity works. We took the question to Professor Bangalore Sathyaprakash of the School of Physics and Astronomy at Cardiff University, and here is his answer. This interview is also available as a podcast.

If you'd like to put another Universe question to experts, vote in the current poll, or leave a comment on this blog.


Labels: ,

posted by Plus @ 9:55 AM


At 11:56 AM, Blogger Jan said...

Thanks for this interesting article - but I do find the paragraph below confusing. My first problem is the sentence: "But according to Newton's gravity, the effect of the Sun's vanishing would be felt immediately, as the Earth would fly away in an tangential direction to its original path." Does this vanishing refer to sight? If so, this has nothing to do with gravity.

"According to Newton's theory, gravitational interaction is instantaneous. Suppose the Sun were to vanish from the horizon today. We would not notice its disappearance immediately just by looking at the Sun, because light takes some time to travel. But according to Newton's gravity, the effect of the Sun's vanishing would be felt immediately, as the Earth would fly away in an tangential direction to its original path." Einstein's special theory of relativity, however, states that nothing, not even information, can travel faster than the speed of light. "It's possible to use the vanishing Sun analogy to construct [theoretical] gravitational telegraphs which would transmit information instantaneously — and that, according to Einstein, is impossible. That's the reason why Einstein had to reformulate the theory of gravity." Einstein published his reformulation in 1916, under the name of general relativity.


At 2:35 PM, Anonymous The Plus Team said...

To clarify: no, here "vanishing" doesn't refer to sight. It refers to the Sun being actually removed, and with it its gravitational pull.

September 24, 2009
Thursday, September 24, 2009

A researcher from the University of Bath has tackled an old geometric problem with a new method, which may lead to advances in creating hip replacements and replacement bone tissue for bone cancer patients. The Kelvin problem, posed by Lord Kelvin in 1887, is to find an arrangement of cells, or bubbles, of equal volume, so that the surface area of the walls between them is as small as possible — in other words, to find the most efficient soap bubble foam. The problem is relevant to bone replacement materials because bone tissue has a honeycomb-like structure, similar to a bubble foam.


Labels: ,

posted by Plus @ 9:59 AM


Syndicate content