Articles

 Over the past one hundred years, mathematics has been used to understand and predict the spread of diseases, relating important public-health questions to basic infection parameters. Matthew Keeling describes some of the mathematical developments that have improved our understanding and predictive ability. Arguably, the exponential function crops up more than any other when using mathematics to describe the physical world. In the second of two articles on physical phenomena which obey exponential laws, Ian Garbett discusses radioactive decay. Until you understand the basics of functions and algebra, the thought that a number can be predicted is a surprising one. And of course `magic' and `being surprised' are often the same thing. Rob Eastaway shows us how mathemagicians trade off the fact that you can usually predict precisely the outcome of doing something in mathematics, but only if you know the secret beforehand. Adam Smith is often thought of as the father of modern economics. In his book "An Inquiry into the Nature and Causes of the Wealth of Nations" Smith decribed the "invisible hand" mechanism by which he felt economic society operated. Modern game theory has much to add to Smith's description. There are many sorts of games played in a "bunco booth", where a trickster or sleight-of-hand expert tries to relieve you of your money by getting you to place bets - on which cup the ball is under, for instance, or where the queen of spades is. Lots of these games can be analysed using probability theory, and it soon becomes obvious that the games are tipped heavily in favour of the trickster! Why can't human beings walk as fast as they run? And why do we prefer to break into a run rather than walk above a certain speed? Using mathematical modelling, R. McNeill Alexander finds some answers.