book review

Gerd Gigerenzer is not a mathematician or statistician per se, but primarily a psychologist, working across disciplines to understand how human beings make decisions in the face of uncertainty. What he offers here is nothing less than a prescription for how to think, how to choose, and how to live, when the information on which we base our decisions is necessarily incomplete and flawed. For example - how worried should you be if you have a positive mammogram as part of a screening programme for breast cancer, or a positive HIV test despite the fact that you are in a low-risk group?
During September and October, the Isaac Newton Institute for Mathematical Sciences showed a small exhibition of two suites of photo-etchings with mathematical components by the Canadian artist Catherine M Stewart, who studied both maths and physics in the course of her undergraduate degree at the University of Toronto. Elements of Grace is a collection of 12 photo-etchings which combine diagrams from Newton's Principia Mathematica (1729) with photodetails of the human body.
Anyone who thought geometry was boring or dry should prepare to be amazed. Despite its worthy cover this book is exactly what its title says - a story - and the plot of this story involves life, death and revolutions of understanding and belief, and stars the some of the most famous names in history.
Euclid defined what later became known as the Golden Ratio thus: A straight line is said to have been cut in extreme and mean ratio when, as the whole line is to the greater segment, so is the greater to the lesser.
Despite its title, Carl Djerassi's latest play, Calculus, is more like a lesson in history or even psychology than one in mathematics. This is because Djerassi's intention was to explore the moral calculus that was involved in the discovery of the mathematical technique, rather than the technique itself.
Although some people might find maths deadly boring, very few of us would think it could ever be deadly dangerous. But deadly it was in 16th century England, and one of those who followed the dangerous and mystical path of a mathematician was John Dee, the subject of this book.
Sherman Stein's motivation for writing this book grew out of a course on the history of calculus for undergraduates he taught for several years. Before that, like most of us, he didn't know where Archimedes' reputation as one of the greatest mathematicians of all time had come from - and now he wants us to know too.
First the executive summary: read these excellent books, and make sure all your friends and relations and bright pupils (if you are a teacher) or teachers (if a bright pupil) do so too. Mathematical Vistas (MV) is the sequel to the same authors' earlier Mathematical Reflections (MR). Each book is a series of explorations of mathematical topics, informed by a definite idea of what mathematics is, and how it should be taught.
If "How to solve it" really contained an infallible recipe for doing so, mathematics would not be mathematics and the world would be quite different. Of course it doesn't - it can't - but it can - and does - contain a great deal of food for thought for the budding mathematician. Like many other Central Europeans, Pólya relocated to the US at the beginning of the Second World War. There he worked at Stanford University and wrote this immensely successful book (more than a million copies sold) in 1945.
This book is built on an extended metaphor, which casts equations as the poetry of science. According to the editor Graham Farmelo (head of Science Communication at the Science Museum in London), great equations and great poems are alike in a number of ways. Both suffer if anything is added, changed, or taken away, both are a rich stimulus to the prepared imagination, and both draw much of their power from their conciseness.