5 occupies position number 5 in the Fibonacci sequence.

The number that occupies the 25th position, 75025, ends with 25 (which is 5^2 of course).

The125th position is occupied by a number ending in 125 (or 5^3): 59425114757512643212875125.

Ditto for 625 and 3125, which are 5^4 and 5^5 respectively

But this curious rule seems to start breaking down for powers of 5 greater than 5.

This question is for testing whether you are a human visitor and to prevent automated spam submissions.