## Remarkable reversible numbers

Submitted by Marianne on September 29, 2015Some tricks to help you with your mental arithmetic when you're dealing with reversible numbers.

Reversible numbers, or more specifically pairs of reversible numbers, are whole numbers in which the digits of one number are the reverse of the digits in another number, for example, 2847 and 7482 form a reversible pair. Reversible pairs prove interesting because of the unexpected way in which they allow addition and subtraction to be carried out — a way that facilitates mental arithmetic. This is best illustrated with a couple of examples.

### Addition

Take a reversible pair such as and The addition of these two numbers can in this case be performed quite simply by taking the sum of the two digits and multiplying it by 11:

Let’s try this again with the pair and

### Subtraction

Subtraction is carried out in a similar fashion, except the difference between the two digits is taken and the result multiplied by 9. For example, in subtracting from we have

Similarly, for and we have

It works like magic. But why?

### The underlying theory

Any positive whole number which is less than is written with two digits :

Its reverse is therefore

For example, if and we have and

The sum of and then, is

Similarly, their difference is

The result also holds if is a number that ends in such as In this case,

### Triple digit numbers

Does something similar work for triple digit numbers? We can use the same method as above to derive the corresponding equations. A positive whole number with the digits is equal to

Its reverse will therefore be

For the sum we get

For the difference we get

The equation for the sum looks more complicated than for double digit numbers, but the equation for the difference preserves the same degree of simplicity. The trouble is that it doesn’t really make the mental arithmetic easier as it now involves multiplying by 99.

There is another neat trick, however: simply treat the first and last digits as though they formed a two digit number. First, find the difference using the equation for a two digit number, that is, and then place a nine between the two digits (assume a leading zero if necessary).

As an example, consider and As we saw above, the difference between the two digit numbers and is Now drop a in the middle to give

The last step can be justified by factorising the coefficient of the equation for the difference.

Since is a multiple of the sum of its digits will also be (that’s a fact you can easily verify). We now resort to a short-cut for multiplying by 11 that you might have heard of: split the two digits (in this case of ) and place their sum between them. As we have just seen, that sum is which justifies our trick above.

### The general case

Can we extend these results to numbers with more digits? In the case of a four-digit reversible number the equations become

and

For a general -digit number, written as the equations are

and

This looks a lot more complicated. There are limits, then, as to how far we can go in finding the sum and difference of two reversible numbers this way. But that does not detract from its usefulness within those limits!

### Further reading

Find out more about reversible numbers in Michael P. Greaney's *Little book of reversible numbers*.

### About the author

Michael P. Greaney is a writer with particular interests in astronomy and mathematics. Apart from the *Little book of reversible numbers*, he has written articles for a number of astronomical magazines and was a contributing author to the book *Observing and Measuring Visual Double Stars* (Springer, 2012).