Permalink Submitted by Anonymous on November 23, 2015

Good one ..
Conditions
1) each one has different colours
2) Exactly one of the statement can be correct

My arguments is like this
If X is Red is True then Y is not Red will also be true which violates second condition .
So X is RED not possible
Hence X cannot be true ( so X is White or Blue)

Now Y is not Red is True imply Y is White or Blue
Suppose Y is Blue then third statement will be True Not possible
Y is White then X will become Blue again third statement also become true.
Hence Y is not red is False So Y is RED...
Z can be White or Blue But since only one statement is True Z is Blue Hence X is White
X=White
Y= Red
Z= Blue

## Counter logic

Good one ..

Conditions

1) each one has different colours

2) Exactly one of the statement can be correct

My arguments is like this

If X is Red is True then Y is not Red will also be true which violates second condition .

So X is RED not possible

Hence X cannot be true ( so X is White or Blue)

Now Y is not Red is True imply Y is White or Blue

Suppose Y is Blue then third statement will be True Not possible

Y is White then X will become Blue again third statement also become true.

Hence Y is not red is False So Y is RED...

Z can be White or Blue But since only one statement is True Z is Blue Hence X is White

X=White

Y= Red

Z= Blue