Sherman Stein's motivation for writing this book grew out of a course on the history of calculus for undergraduates he taught for several years. Before that, like most of us, he didn't know where Archimedes' reputation as one of the greatest mathematicians of all time had come from - and now he wants us to know too.
As Tony Gardiner says in at the beginning of this book, "the last ten years or so has seen a remarkable blossoming of public interest in mathematics [but] most of the books produced have been for adults, rather than for students. Moreover, most are in prose format - for those who want to 'read about' mathematics, rather than those who want to get their hands dirty solving problems."
Science writer and exhibition researcher Alison Boyle tells Plus about her work creating up-to-the-minute news exhibits at the Science Museum in London.
If "How to solve it" really contained an infallible recipe for doing so, mathematics would not be mathematics and the world would be quite different. Of course it doesn't - it can't - but it can - and does - contain a great deal of food for thought for the budding mathematician. Like many other Central Europeans, Pólya relocated to the US at the beginning of the Second World War. There he worked at Stanford University and wrote this immensely successful book (more than a million copies sold) in 1945.
This book is built on an extended metaphor, which casts equations as the poetry of science. According to the editor Graham Farmelo (head of Science Communication at the Science Museum in London), great equations and great poems are alike in a number of ways. Both suffer if anything is added, changed, or taken away, both are a rich stimulus to the prepared imagination, and both draw much of their power from their conciseness.