A Once-a-Century Double Consecutive e Days to Celebrate Number e
Aziz Inan, Electrical Engineering Donald P. Shiley School of Engineering, University of Portland, Portland, Oregon, USA
August 14, 2019

Double Consecutive e Days! February 7, 2018

February 8, 2018

The number e is an irrational mathematical constant, approximately equal to 2.7182818 , which pops up in many different settings throughout mathematics [1]. It was discovered by Swiss mathematician Jacob Bernoulli in 1683 while he was studying compounded interest equally divided over a period of n intervals which led to the total value being proportional to $(1+1 / n)^{n}$ and Bernoulli noticed that this expression approaches the value of e in the limit n goes to infinity. At the time, letter e was not assigned to this constant.

Swiss mathematician Leonhard Euler (1707-1783) introduced the letter e to represent this constant in 1727 or 1728 in an unpublished paper on explosive forces in cannons and the first appearance of e in a publication was in Euler's Mechanica published in 1736. Euler calculated e up to 23 decimal places and his choice of the symbol e is said to be retained in his honor. This number is also called Euler's number.

The number e holds a very important place in mathematics alongside with constants $0,1, \pi$, and i where interestingly, all five of these numbers appear in an equation called Euler's Formula given by $e^{i \pi}+1=$ 0 . Additionally, the value of e can also be calculated as the sum of the infinite series $e=\sum_{n=0}^{\infty} 1 / n$!

Just like Pi Day which occurs on March 14 every year since March 14 expressed in month/day date format as $3 / 14$ coincides with the first three digits of π, to celebrate number e, February 7 expressed as $2 / 7$ is called e Day because $2 / 7$ constitutes the first two digits of e. However, in the day/month date format, e Day is celebrated every year on 2 July instead of February 7.
e Day in 2018 expressed in the month/day calendar date format as $2 / 7 / 18$ was a special e Day because 2718 represents the first four digits of e and this coincidence occurs only once a century. Furthermore, I observed that the calendar date that follows $2 / 7 / 18$ in the month/day date format, namely February 8, 2018, expressed as $2 / 8 / 18$, coincides with the next four digits of e. So, these double-consecutive calendar dates in 2018, February 7 and 8 , expressed as $2 / 7 / 18$ and $2 / 8 / 18$ put side by side as 27182818 constitutes the first eight digits of e. This property makes the once-a century occurring special e Day $2 / 7 / 18$ even more special because these double-consecutive e Days 2/7/18 and 2/8/18 side by side represent the first eight digits of e.

The once-a-century occurring double consecutive e Days intrigued my interest regarding the early digits of number e. After carrying out further investigation, I would like to report the following interesting arithmetical properties about the early digits of e in which I ignored the decimal point between the first two digits of e, namely 2 and 7 :

Table 1: The first 42 digits of e.

$1^{\text {st }} 6^{\text {th }}$	$7^{\text {th }}-12^{\text {th }}$	$13^{\text {th }}-18^{\text {th }}$	$19^{\text {th }}-24^{\text {th }}$	$25^{\text {th }}-30^{\text {th }}$	$31^{\text {st }}-36^{\text {th }}$	$37^{\text {th }}-4^{\text {nd }}$
2.71828	182845	904523	536028	747135	266249	775724

1. Half of the first six digits of number e given by 271828 results in 135914 and interestingly, reordering these digits as 314159 yields the first six digits of π.
2. Further, if 271828 is split as 27 and 1828 , 1828 minus 27 square equals the sum of 271 and 828 , the left and right halves of 271828.
3. Number 1828 repeats consecutively as the $3^{\text {rd }}$ to $6^{\text {th }}$ and the $7^{\text {th }}$ to $10^{\text {th }}$ digits of e (2.718281828). Interestingly, the sum of the digits of 1828 equals 19 , the reverse of 19 is 91 , the square of 91 equals 8281 , and 8281 is the reverse of 1828.
4. Also, if 1828 is split in the middle as 18 and 28 , the sum of these two numbers equals 46 and if 46 is split as 4 and 6 , the $4^{\text {th }}$ and $6^{\text {th }}$ prime numbers are 7 and 13 and 7 times 13 equals 91 . Also, 46 minus the reverse of 91 (19) equals 27 , the first two digits of e.
5. Additionally, 91 minus 19 equals 72 and 72 is the reverse of 27 , the first two digits of e.
6. Moreover, 19 is the $8^{\text {th }}$ prime number and 19 plus 8 yields 27 , the first two digits of e.
7. The $2^{\text {nd }}$ to $4^{\text {th }}$ digits of e, namely 718 , equals 2 times 359 where these two prime numbers add up to 361 and 361 equals 19 square. Note also that 359 is the $72^{\text {nd }}$ prime number where the reverse of 72 , namely 27 , is again the first two digits of e.
8. Furthermore, if 1828 is again split as 18 and 28 , the sum of the reverses of these two numbers, namely 81 and 82 , results in 163 and the reverse of 163 is 361 , that is, 19 square.
9. Note also that 163 is the $38^{\text {th }}$ prime number and 38 equals twice 19 . Also, the $38^{\text {th }}$ day of each year is $2 / 7$, e Day in the month/day date format.
10. The sum of the prime factors of 1828, namely 2 and 457 , yields 459 which constitutes the $11^{\text {th }}$ to the $13^{\text {th }}$ digits of e, following its first ten digits as 2.718281828459 .
11. Note also that 459 plus its reverse, namely 954 , results in 1413 , the reverse of the first four digits of π.
12. Number 828459045 represents the $8^{\text {th }}$ to $16^{\text {th }}$ digits of e. If this number is split as 828,459 , and 045 , there is a simple arithmetical connection between these three three-digit numbers: twice the difference of the reverses of 459 and 045, namely 954 and 540 , equals 828 .
13. If the $3^{\text {rd }}$ to $14^{\text {th }}$ digits of e, namely 182818284590 , is split as 1828,1828 and 4590,4590 minus twice 1828 equals twice 467 . Interestingly, 467 is the $91^{\text {st }}$ prime number and again, 91 square equals 8281 , the reverse of 1828 .
14. The $13^{\text {th }}$ to $15^{\text {th }}$ digits of e given by 904 divided by 2 results in 452 , the $15^{\text {th }}$ to $17^{\text {th }}$ digits of e. Further, if the first five digits of e, namely 27182 , is split as 27 and 182,182 plus the reverse of 27 , namely 72 , equals 254 and 254 is the reverse of 452 .
15. Moreover, if the first 14 digits of e are split in groups of two-digit numbers as $27,18,28,18,28$, 45 , and 90 , respectively, the sum of these numbers equals 254.
16. Also, 254 times 5 divided by 2 yields 635 and 635 is the reverse of 536 , the $19^{\text {th }}$ to $21^{\text {st }}$ digits of e.
17. If the first six digits of e given as 271828 is split as 27,18 , and 28 , the sum of the reverses of these three numbers, namely 72,81 , and 82 , equals 235 , the $17^{\text {th }}$ to $19^{\text {th }}$ digits of e.
18. One third of the sum of 523 and 536 , the $16^{\text {th }}$ to $18^{\text {th }}$ and $19^{\text {th }}$ to $21^{\text {st }}$ digits of e, equals 353 , the $18^{\text {th }}$ to $20^{\text {th }}$ digits of e. Note that 353 also equals the sum of 271 and 82 , which side by side constitute the first five digits of e.
19. The difference between the reverses of 235 ($17^{\text {th }}$ to $19^{\text {th }}$ digits of e) and 271 ($1^{\text {st }}$ to $3^{\text {rd }}$ digits of $e)$, namely 532 and 172 , equals 360 , the $20^{\text {th }}$ to $22^{\text {nd }}$ digits of e.
20. Also, the difference between $459\left(11^{\text {th }}\right.$ to $13^{\text {th }}$ digits of $\left.e\right)$ and the reverse of 271 ($1^{\text {st }}$ to $3^{\text {rd }}$ digits of e) yields 287 , the $23^{\text {rd }}$ to $25^{\text {th }}$ digits of e.
21. The difference of 1828 ($3^{\text {rd }}$ to $6^{\text {th }}$ and $7^{\text {th }}$ to $10^{\text {th }}$ digits of $\left.e\right)$ and the reverse of $459\left(11^{\text {th }}\right.$ to $13^{\text {th }}$ digits of e), namely 954 , equals 874 , the $24^{\text {th }}$ to $26^{\text {th }}$ digits of e.
22. Half of the sum of the reverses of $459\left(11^{\text {th }}\right.$ to $13^{\text {th }}$ digits of $\left.e\right)$ and $045\left(14^{\text {th }}\right.$ to $16^{\text {th }}$ digits of $\left.e\right)$, namely 954 and 540 , equals 747 , the $25^{\text {th }}$ to $27^{\text {th }}$ digits of e.
23. Further, half of the reverse of $235\left(17^{\text {th }}\right.$ to $19^{\text {th }}$ digits of $\left.e\right)$, namely 532 , equals 266 , the $31^{\text {st }}$ to $33^{\text {rd }}$ digits of e.
24. The difference between 353 ($18^{\text {th }}$ to $20^{\text {th }}$ digits of e) and 602 ($21^{\text {st }}$ to $23^{\text {rd }}$ digits of e) equals 249 , the $34^{\text {th }}$ to $36^{\text {th }}$ digits of e. Moreover, 249 equals one third of $747\left(25^{\text {th }}\right.$ to $27^{\text {th }}$ digits of $\left.e\right)$.
25. Additionally, 249 equals the difference of 536 ($19^{\text {th }}$ to $21^{\text {st }}$ digits of e) and 287 ($23^{\text {rd }}$ to $25^{\text {th }}$ digits of e). Also, twice 287 minus 249 equals 325 , which is the reverse of 523 ($16^{\text {th }}$ to $18^{\text {th }}$ digits of e).
26. The sum of 028 ($22^{\text {nd }}$ to $24^{\text {th }}$ digits of e) and $747\left(25^{\text {th }}\right.$ to $27^{\text {th }}$ digits of $\left.e\right)$ equals 775 , the $37^{\text {th }}$ to $39^{\text {th }}$ digits of e.
27. Twice 271 ($1^{\text {st }}$ to $3^{\text {rd }}$ digits of e) plus 182 ($3^{\text {rd }}$ to $5^{\text {th }}$ digits of e) equals 724 , the $40^{\text {th }}$ to $42^{\text {nd }}$ digits of e.

I hope these properties serve to generate more interest in the digits of number e. Further, some of these properties may also possess the potential to someday help mathematicians and scientists to uncover the mystery of number e. Lastly, I wish future generations will recognize and celebrate the Double Consecutive e Days in every year ending with 18, with the first one to occur in 2118.
[1] e (mathematical constant), Wikipedia
https://en.wikipedia.org/wiki/E (mathematical constant)

