
From bridges to networks

From Königsberg to modern network science

When Leonhard Euler solved the Bridges of Königsberg 
problem in 1735 he single-handedly founded a whole new 
area of maths called graph theory. A graph is a collection of 
nodes connected up by links (in the bridges problem the 
nodes would represent the bits of land and the links 
between them the connecting bridges). Really a graph is 
just a network, which is why today the study of these 
objects is also referred to as network theory.

Networks are absolutely everywhere. We live in social 
networks, travel along road and rail networks, and rely on 
telephone networks and utility networks that deliver power 
or water. Our computers and phones are hooked up to that 
vast network called the internet; rivalled in complexity only 
by the network of neurons in our brains, which enables us 
to produce all these complex structures in the first place.

Those networks are large and complex, but mathematical 
study has revealed interesting features that can help us 
understand, protect, or even break them. One such feature 
has become famous as the ‘Six Degrees of Kevin Bacon’. 
The idea is that if you link two actors that have appeared in 
the same movie, then every actor, no matter how obscure 
and unimportant, is only six links away from the Hollywood 
star Kevin Bacon. 

Behind this strange “fact” is the concept of small world networks. A small 
world network is one in which the average distance between any two 
nodes (where distance is counted in the number of links that connect two 
nodes) is small and in which there also is a lot of local clustering: if two 
nodes are connected, then so are their other immediate neighbours. 

Many real life networks, including social networks, the internet, and 
networks in our brain, have been found to be small world networks. For 
networks that perform a useful function, like utility networks or the neural 
networks in our brain, the small world feature is very useful. It means that 
tasks can be performed efficiently both at a local level and distributed 
between clusters. 

Another feature often found in networks is that they contain a few 
extremely well-connected hubs: these are nodes that have many more 
links than the majority of others. The difference between networks that 
contain such hubs, which are called scale-free networks, and those with 
evenly distributed links is that they behave very differently when they are 
under stress which causes individual nodes to drop out or fail. This could 
happen by police arresting terrorists in a terrorist network, doctors 
immunising people against a disease in a ‘disease network’, or by internal 
congestion, for example in a traffic or computer network. If you eliminate 
nodes of a scale free network at random, then the network will remain 
pretty much unharmed for a long time, because the chance that you 
happen to take out one of the highly connected hubs is low. By contrast, 
a network with evenly distributed degrees will fall apart quite quickly. 

If, however, you know what you are doing, you can completely paralyse a 
scale free network by simply taking out a very small number of highly 
connected nodes. By analysing the structure of a network mathematically, 
you can figure out how to disrupt a network you don’t want, to stop 
terrorists or the spread of a disease, or how to protect those you do want 
to perform well, such as the internet or a neural network in a person’s 
brain.

One hugely important 
insight from the 
mathematics of networks, 
which also helped Euler 
solve the bridges problem, 
is that often it helps to 
forget how a network is 
arranged in space and 
concentrate on the links 
between nodes. 
A great example of this is 
the London tube map. 
Geographically it is 
woefully incorrect as it 
distorts distances between 
stations and pretends that 
lines run along neat 
straight lines,which they don’t. But this distorted lay-out is exactly 
what makes the map so easy to read: were it correct you would see 
all the central London stations cramped together in the middle, so 
that the far-away ones still fit in, and they’d all be connected by a 
tangled mess of lines. The London tube map is a topological map, 
after an area of maths called topology which concentrates on the 
connectivity of a shape rather than its precise geometry. Euler did 
just that when he solved the bridges problem, so he can also be 
credited with laying the foundations for topology.

Whether you are trying to make friends, fight terrorists, improve 
internet connections or travel around London, look to mathematics to 
help you along!

 

A favourite puzzle in Königsberg in the 18th century was to find a 
way to walk across all seven bridges in their town, crossing each 
bridge once and only once. There was only one problem: it wasn’t 
possible, as mathematician Leonhard Euler discovered.
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