quantum uncertainty
At the heart of modern physics lurks a terrible puzzle: the two main theories that describe the world we live in just won't fit together. 
In the first article of this series we introduced Schrödinger's equation and in the second we saw it in action using a simple example. But how should we interpret its solution, the wave function? What does it tell us about the physical world? 
In the 1920s the Austrian physicist Erwin Schrödinger came up with what has become the central equation of quantum mechanics. It tells you all there is to know about a quantum physical system and it also predicts famous quantum weirdnesses such as superposition and quantum entanglement. In this, the first article of a threepart series, we introduce Schrödinger's equation and put it in its historical context. 
Most of us think that we have the capacity to act freely. Our sense of morality, our legal system, our whole culture is based on the idea that there is such a thing as free will. It's embarrassing then that classical physics seems to tell a different story. And what does quantum theory have to say about free will? 
Over the last few years the words string theory have nudged their way into public consciousness. It's a theory of everything in which everything's made of strings — or something like that. But why strings? What do they do? Where did the idea come from and why do we need such a theory? David Berman has an equationfree introduction for beginners.


One of the many strange ideas from quantum mechanics is that space isn't continuous but consists of tiny chunks. Ordinary geometry is useless when it comes to dealing with such a space, but algebra makes it possible to come up with a model of spacetime that might do the trick. And it can all be tested by a satellite. Shahn Majid met up with Plus to explain.


Quantum mechanics is the physics of the extremely small. With something so far outside our everyday experience it's not surprising to find mathematics at the heart of it all. But at the quantum scale nothing in life is certain... Peter Landshoff explains.
