curvature
https://plus.maths.org/content/taxonomy/term/323
enKissing the curve
https://plus.maths.org/content/kissing-curve
<div class="field field-type-text field-field-author">
<div class="field-items">
<div class="field-item odd">
Rachel Thomas </div>
</div>
</div>
<div class="field field-type-filefield field-field-abs-img">
<div class="field-items">
<div class="field-item odd">
<img class="imagefield imagefield-field_abs_img" width="100" height="100" alt="" src="https://plus.maths.org/content/sites/plus.maths.org/files/abstractpics/4/23_jul_2014_-_1717/icon.jpg?1406132260" /> </div>
</div>
</div>
<div class="field field-type-text field-field-abs-txt">
<div class="field-items">
<div class="field-item odd">
<p>From a smile to a line drawing by Picasso, curves bring great beauty to our world. But how curvy is a curve?</p>
</div>
</div>
</div>
<p>
From a smile to a line drawing by Picasso, curves bring great beauty to our world. Curves are also a beautiful and important part of mathematics and understanding curvature can shed light not just on beautiful shapes but can even reveal the undulations of space-time itself.
</p><p>
If I ask you to think of a curve, you might think of a circle, a spiral, a sine wave, or some intricate curving squiggle. Almost certainly you won't think of a flat, straight line, and you won't think of a line of jagged spikes and sharp corners.
</p><p><a href="https://plus.maths.org/content/kissing-curve" target="_blank">read more</a></p>https://plus.maths.org/content/kissing-curve#commentscurvaturegeometryThu, 24 Jul 2014 09:02:16 +0000Rachel6111 at https://plus.maths.org/contentHidden dimensions
https://plus.maths.org/content/hidden-dimensions
<div class="field field-type-text field-field-author">
<div class="field-items">
<div class="field-item odd">
Marianne Freiberger </div>
</div>
</div>
<div class="field field-type-filefield field-field-abs-img">
<div class="field-items">
<div class="field-item odd">
<img class="imagefield imagefield-field_abs_img" width="100" height="100" alt="" src="https://plus.maths.org/content/sites/plus.maths.org/files/abstractpics/5/17%20Dec%202010%20-%2012%3A46/icon.jpg?1292589967" /> </div>
</div>
</div>
<div class="field field-type-text field-field-abs-txt">
<div class="field-items">
<div class="field-item odd">
<p>That geometry should be relevant to physics is no surprise — after all, space is the arena in which physics happens. What is surprising, though, is the extent to which the geometry of space actually determines physics and just how exotic the geometric structure of our Universe appears to be. <em>Plus</em> met up with mathematician Shing-Tung Yau to find out more.</p> </div>
</div>
</div>
<div class="leftimage" style="width: 130px;"><img src="/sites/plus.maths.org/files/articles/2010/yau/yau.jpg" alt="" width="130" height="156" />
<p>Shing-Tung Yau.</p>
</div><p>That geometry should be relevant to physics is no surprise — after all, space is the arena in which physics happens. What is surprising, though, is the extent to which the geometry of space actually determines physics and just how exotic the geometric structure of our Universe appears to be. </p><p><a href="https://plus.maths.org/content/hidden-dimensions" target="_blank">read more</a></p>https://plus.maths.org/content/hidden-dimensions#commentsmathematical realitycalabi-yau manifoldcurvaturecurvature of spacedimensiongeneral relativitygravitystring theoryTue, 21 Dec 2010 15:38:56 +0000mf3445388 at https://plus.maths.org/contentFrom kaleidoscopes to soccer balls
https://plus.maths.org/content/kaleidoscopes-soccer-balls
<div class="field field-type-filefield field-field-abs-img">
<div class="field-items">
<div class="field-item odd">
<img class="imagefield imagefield-field_abs_img" width="130" height="130" alt="" src="https://plus.maths.org/content/sites/plus.maths.org/files/issue25/news/coxeter/icon.jpg?1051657200" /> </div>
</div>
</div>
<div class="field field-type-text field-field-abs-txt">
<div class="field-items">
<div class="field-item odd">
The work of Donald Coxeter, who died on 31 March 2003, will continue to inspire both mathematicians and artists. </div>
</div>
</div>
<div class="pub_date">30/04/03</div>
<!-- plusimport --><br clear="all"></br>
<!-- END OF FILE: newinclude/news_header.html -->
<p>The worlds of mathematics and art lost a great mind when <a href="http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Coxeter.html">Donald Coxeter</a>, said to be the greatest classical geometer of his generation, died on 31 March 2003 in Toronto, Canada, aged 96.</p><p><a href="https://plus.maths.org/content/kaleidoscopes-soccer-balls" target="_blank">read more</a></p>https://plus.maths.org/content/kaleidoscopes-soccer-balls#commentscurvatureeschergeodesic domegroup theoryhyperbolic geometrymathematics and artmathematics in the mediasymmetryTue, 29 Apr 2003 23:00:00 +0000plusadmin2725 at https://plus.maths.org/contentMathematical mysteries: Strange Geometries
https://plus.maths.org/content/mathematical-mysteries-strange-geometries
<div class="field field-type-text field-field-author">
<div class="field-items">
<div class="field-item odd">
Helen Joyce </div>
</div>
</div>
<div class="field field-type-filefield field-field-abs-img">
<div class="field-items">
<div class="field-item odd">
<img class="imagefield imagefield-field_abs_img" width="100" height="100" alt="" src="https://plus.maths.org/content/sites/plus.maths.org/files/abstractpics/5/30%20Jun%202010%20-%2016%3A30/mystery.gif?1277911831" /> </div>
</div>
</div>
<div class="field field-type-text field-field-abs-txt">
<div class="field-items">
<div class="field-item odd">
<p>The famous mathematician Euclid is credited with being the first person to axiomatise the geometry of the world we live in - that is, to describe the geometric rules which govern it. Based on these axioms, he proved theorems - some of the earliest uses of proof in the history of mathematics.</p>
</div>
</div>
</div>
<div class="pub_date">Jan 2002</div>
<!-- plusimport -->
<h2>Euclidean Geometry</h2>
<p>The famous mathematician Euclid is credited with being the first person to axiomatise the geometry of the world we live in - that is, to describe the geometric rules which govern it. Based on these axioms, he proved theorems - some of the earliest uses of proof in the history of mathematics. Euclid's work is discussed in detail in <a href="/issue7/features/proof1/index.html">The Origins
of Proof</a>, from Issue 7 of <i>Plus</i>.</p><p><a href="https://plus.maths.org/content/mathematical-mysteries-strange-geometries" target="_blank">read more</a></p>https://plus.maths.org/content/mathematical-mysteries-strange-geometries#comments18curvaturecurvature of spaceescherEuclid's ElementsEuclidean geometryflatnesshyperbolic geometryMathematical mysteriesMercator projectionspherical geometrytrigonometrySat, 01 Dec 2001 00:00:00 +0000plusadmin4754 at https://plus.maths.org/contentIn space, do all roads lead to home?
https://plus.maths.org/content/space-do-all-roads-lead-home
<div class="field field-type-text field-field-author">
<div class="field-items">
<div class="field-item odd">
Janna Levin </div>
</div>
</div>
<div class="field field-type-filefield field-field-abs-img">
<div class="field-items">
<div class="field-item odd">
<img class="imagefield imagefield-field_abs_img" width="130" height="130" alt="" src="https://plus.maths.org/content/sites/plus.maths.org/files/issue10/features/topology/icon.jpg?946684800" /> </div>
</div>
</div>
<div class="field field-type-text field-field-abs-txt">
<div class="field-items">
<div class="field-item odd">
Is the Universe finite, with an edge, or infinite, with no edges? Or is it even stranger: finite but with no edges? It sounds far-fetched but the mathematical theory of topology makes it possible, and nobody yet knows the truth. <strong>Janna Levin</strong> tells us more. </div>
</div>
</div>
<div class="pub_date">January 2000</div>
<!-- plusimport -->
<p><!-- FILE: include/leftfig.html --></p>
<div class="leftimage" style="width: 150px;"><img src="/issue10/features/topology/walking.gif" alt="Figure 1: Getting nowhere" width="150" height="100" />
<p>Figure 1: Getting nowhere</p><p><a href="https://plus.maths.org/content/space-do-all-roads-lead-home" target="_blank">read more</a></p>https://plus.maths.org/content/space-do-all-roads-lead-home#comments10compact universeconnectednesscosmologycurvatureklein bottlemobius striptilingtopologySat, 01 Jan 2000 00:00:00 +0000plusadmin2164 at https://plus.maths.org/content