Arrow's theorem
https://plus.maths.org/content/taxonomy/term/400
enElection perfection?
https://plus.maths.org/content/election-perfection
<div class="field field-type-filefield field-field-abs-img">
<div class="field-items">
<div class="field-item odd">
<img class="imagefield imagefield-field_abs_img" width="100" height="100" alt="" src="https://plus.maths.org/content/sites/plus.maths.org/files/abstractpics/5/29_apr_2015_-_1058/icon.jpg?1430301509" /> </div>
</div>
</div>
<div class="field field-type-text field-field-abs-txt">
<div class="field-items">
<div class="field-item odd">
<p>Why a perfect voting system is mathematically impossible.</p>
</div>
</div>
</div>
<div class="rightimage" style="max-width:300px;"><img src="https://plus.maths.org/content/sites/plus.maths.org/files/news/2015/election/election.jpg" width="300" height="310" alt="UK" /><p>Will you vote? </p> </div>
<p>It's just over a week until the general election and at this stage you'd be forgiven for feeling sick and tired of it. There is, however, an interesting bit of maths behind voting that is fun to think about.</p><p><a href="https://plus.maths.org/content/election-perfection" target="_blank">read more</a></p>https://plus.maths.org/content/election-perfection#commentsArrow's theoremelectionFP-top-storyvotingvoting systemsWed, 29 Apr 2015 09:19:47 +0000mf3446361 at https://plus.maths.org/contentMaths in a minute: Arrow's theorem
https://plus.maths.org/content/maths-minute-arrows-theorem
<p>Is there a perfect voting system? In the 1950s the economist <a href="http://en.wikipedia.org/wiki/Kenneth_Arrow">Kenneth
Arrow</a> asked himself this question and found that the answer is no, at
least in the setting he imagined.</p><p><a href="https://plus.maths.org/content/maths-minute-arrows-theorem" target="_blank">read more</a></p>https://plus.maths.org/content/maths-minute-arrows-theorem#commentsArrow's theoremelectionvotingvoting systemsWed, 29 May 2013 12:28:03 +0000mf3445861 at https://plus.maths.org/contentWhich voting system is best?
https://plus.maths.org/content/which-voting-system-best
<div class="field field-type-filefield field-field-abs-img">
<div class="field-items">
<div class="field-item odd">
<img class="imagefield imagefield-field_abs_img" width="100" height="100" alt="" src="https://plus.maths.org/content/sites/plus.maths.org/files/abstractpics/5/27_apr_2011_-_1216/icon.jpg?1303902973" /> </div>
</div>
</div>
<div class="field field-type-text field-field-abs-txt">
<div class="field-items">
<div class="field-item odd">
<p>With the day of the referendum on the UK voting system drawing nearer, Tony Crilly uses a toy example to compare the first past the post, AV and Condorcet voting systems, and revisits a famous mathematical theorem which shows that there is nothing obvious about voting.</p>
</div>
</div>
</div>
<p><em>With the day of the referendum on the UK voting system drawing nearer, Tony Crilly uses a toy example to compare the first past the post, AV and Condorcet voting systems, and revisits a famous mathematical theorem which shows that there is nothing obvious about voting.</em></p>
<div class="rightimage" style="width: 333px;"><img src="https://plus.maths.org/content/sites/plus.maths.org/files/news/2011/vote/istock_scale.jpg" alt="Choosing the winner" width="333" height="283" /><p>How to choose a winner?</p><p><a href="https://plus.maths.org/content/which-voting-system-best" target="_blank">read more</a></p>https://plus.maths.org/content/which-voting-system-best#commentsArrow's theoremCondorcet paradoxelectionvotingWed, 27 Apr 2011 10:12:26 +0000mf3445478 at https://plus.maths.org/contentEditorial
https://plus.maths.org/content/editorial-7
<div class="field field-type-text field-field-abs-txt">
<div class="field-items">
<div class="field-item odd">
<p>Election issues</p>
</div>
</div>
</div>
<div class="pub_date">September 2008</div>
<!-- plusimport -->
<!-- #include virtual="/include/gifd_here_box.html" -->
<!-- <h2>This issue's <i>Plus</i> chat topics</h2>
<ul><li><a href="#league">The league table lottery</a></li>
<li><a href="#elections"><i>Plus</i> and presidents</a></li></ul>
<a name="league"></a> -->
<h3>Election issues</h3>
<p>Whenever major elections come around public attention swings, albeit briefly, to a mathematical aspect of democracy: how to devise a voting system that reflects the true "will of the people".<p><a href="https://plus.maths.org/content/editorial-7" target="_blank">read more</a></p>48Arrow's theoremCondorcet paradoxCondorcet winnereditorialelectionvotingvoting paradoxvoting systemsSun, 31 Aug 2008 23:00:00 +0000plusadmin4904 at https://plus.maths.org/contentAdam Smith and the invisible hand
https://plus.maths.org/content/adam-smith-and-invisible-hand
<div class="field field-type-text field-field-author">
<div class="field-items">
<div class="field-item odd">
Helen Joyce </div>
</div>
</div>
<div class="field field-type-filefield field-field-abs-img">
<div class="field-items">
<div class="field-item odd">
<img class="imagefield imagefield-field_abs_img" width="130" height="130" alt="" src="https://plus.maths.org/content/sites/plus.maths.org/files/issue14/features/smith/icon.jpg?983404800" /> </div>
</div>
</div>
<div class="field field-type-text field-field-abs-txt">
<div class="field-items">
<div class="field-item odd">
Adam Smith is often thought of as the father of modern economics. In his book "An Inquiry into the Nature and Causes of the Wealth of Nations" Smith decribed the "invisible hand" mechanism by which he felt economic society operated. Modern game theory has much to add to Smith's description. </div>
</div>
</div>
<div class="pub_date">March 2001</div>
<!-- plusimport -->
<br clear="all" />
<blockquote><i>...every individual necessarily labours to render the annual revenue of the society as great as he can. He generally, indeed, neither intends to promote the public interest, nor knows how much he is promoting it.<p><a href="https://plus.maths.org/content/adam-smith-and-invisible-hand" target="_blank">read more</a></p>https://plus.maths.org/content/adam-smith-and-invisible-hand#comments14Adam SmithArrow's theoremfree marketgame theoryinvisible handPrisoner's Dilemmasocial choiceThu, 01 Mar 2001 00:00:00 +0000plusadmin2182 at https://plus.maths.org/contentOpinion
https://plus.maths.org/content/opinion-0
<p><a href="https://plus.maths.org/content/opinion-0" target="_blank">read more</a></p>13Arrow's theoremeditorialpublic image of mathematicssocial choiceUS Presidential electionsvoting systemsMon, 01 Jan 2001 00:00:00 +0000plusadmin4863 at https://plus.maths.org/content