complex number
https://plus.maths.org/content/taxonomy/term/483
enThe Abel Prize 2013
https://plus.maths.org/content/abel-prize-2013
<div class="field field-type-filefield field-field-abs-img">
<div class="field-items">
<div class="field-item odd">
<img class="imagefield imagefield-field_abs_img" width="100" height="100" alt="" src="https://plus.maths.org/content/sites/plus.maths.org/files/abstractpics/5/25_mar_2013_-_1521/icon-2.jpg?1364224876" /> </div>
</div>
</div>
<div class="field field-type-text field-field-abs-txt">
<div class="field-items">
<div class="field-item odd">
<p>This year's Abel Prize has been awarded to the Belgian mathematician Pierre Deligne for "seminal contributions to algebraic geometry and for their transformative impact on number theory, representation theory, and related fields".</p>
</div>
</div>
</div>
<p>This year's <a href="http://www.abelprize.no/c57681/seksjon/vis.html?tid=57683">Abel Prize</a> has been awarded to the Belgian mathematician Pierre Deligne for "seminal contributions to algebraic geometry and for their transformative impact on number theory, representation theory, and related fields". The Abel Prize was established in 2003 in memory of the Norwegian mathematician <a href="http://www-history.mcs.st-and.ac.uk/Biographies/Abel.html">Niels Henrik Abel</a>.<p><a href="https://plus.maths.org/content/abel-prize-2013" target="_blank">read more</a></p>https://plus.maths.org/content/abel-prize-2013#commentsAbel prizealgebraic geometrycomplex numbernumber theoryprime numberprime number distributionRiemann hypothesisRiemann zeta functionTue, 26 Mar 2013 14:17:46 +0000mf3445878 at https://plus.maths.org/contentMaths in a minute: Complex numbers
https://plus.maths.org/content/maths-minute-complex-numbers
<p>Solving equations often involves taking square roots of numbers and if you're not careful you might accidentally take a square root of something that's negative. That isn't allowed of course, but if you hold your breath and just carry on, then you might eventually square the illegal entity again and end up with a negative number that's a perfectly valid solution to your equation. </p><p><a href="https://plus.maths.org/content/maths-minute-complex-numbers" target="_blank">read more</a></p>https://plus.maths.org/content/maths-minute-complex-numbers#commentscomplex numberTue, 19 Feb 2013 08:41:26 +0000mf3445862 at https://plus.maths.org/contentFractal photo finish
https://plus.maths.org/content/fractal-photo
<div class="field field-type-filefield field-field-abs-img">
<div class="field-items">
<div class="field-item odd">
<img class="imagefield imagefield-field_abs_img" width="100" height="100" alt="" src="https://plus.maths.org/content/sites/plus.maths.org/files/abstractpics/5/28_sep_2012_-_1751/icon.png?1348851072" /> </div>
</div>
</div>
<div class="field field-type-text field-field-abs-txt">
<div class="field-items">
<div class="field-item odd">
<p>If you're bored with your holiday snaps, then why not turn them into fractals? A new result by US mathematicians shows that you can turn any reasonable 2D shape into a fractal, and the fractals involved are very special too. They are intimately related to the famous Mandelbrot set.</p>
</div>
</div>
</div>
<div class="rightimage" style="width: 300px;"><img src="/sites/plus.maths.org/files/news/2010/mandelbrot/mandelbrot.jpg" alt="" width="300" height="225" />
<p>The Mandelbrot set. Image <a href="http://en.wikipedia.org/wiki/File:Mandel_zoom_00_mandelbrot_set.jpg">Wolfgang Beyer</a>. </p><p><a href="https://plus.maths.org/content/fractal-photo" target="_blank">read more</a></p>https://plus.maths.org/content/fractal-photo#commentscomplex dynamicscomplex numberfractalJulia setMandelbrot setWed, 03 Oct 2012 08:05:30 +0000mf3445786 at https://plus.maths.org/contentPandora's 3D box
https://plus.maths.org/content/pandoras-3d-box
<div class="field field-type-filefield field-field-abs-img">
<div class="field-items">
<div class="field-item odd">
<img class="imagefield imagefield-field_abs_img" width="100" height="100" alt="" src="https://plus.maths.org/content/sites/plus.maths.org/files/latestnews/sep-dec09/mandelbrot/icon.jpg?1259107200" /> </div>
</div>
</div>
<div class="field field-type-text field-field-abs-txt">
<div class="field-items">
<div class="field-item odd">
A new 3D version of the Mandelbrot set </div>
</div>
</div>
<div class="pub_date">25/11/2009</div>
<!-- plusimport --><br clear="all"></br?
<!-- END OF FILE: newinclude/news_header.html -->
<p>An amateur fractal programmer has discovered a new 3D version of the Mandelbrot set. <a href="http://www.skytopia.com/profile/profile.html">Daniel White's</a> new creation is based on similar mathematics as the original 2D Mandelbrot set, but its infinite intricacy extends into all three dimensions, revealing fractal worlds of amazing complexity and beauty at every level of magnification.</p><p><a href="https://plus.maths.org/content/pandoras-3d-box" target="_blank">read more</a></p>https://plus.maths.org/content/pandoras-3d-box#commentscomplex dynamicscomplex numberfractalMandelbrot setWed, 25 Nov 2009 00:00:00 +0000plusadmin2828 at https://plus.maths.org/contentA tale of two curricula: Euler's algebra text book
https://plus.maths.org/content/tale-two-curricula-eulers-algebra-text-book
<div class="field field-type-text field-field-author">
<div class="field-items">
<div class="field-item odd">
Chris Sangwin </div>
</div>
</div>
<div class="field field-type-filefield field-field-abs-img">
<div class="field-items">
<div class="field-item odd">
<img class="imagefield imagefield-field_abs_img" width="100" height="100" alt="" src="https://plus.maths.org/content/sites/plus.maths.org/files/issue45/features/sangwin/icon.jpg?1196467200" /> </div>
</div>
</div>
<div class="field field-type-text field-field-abs-txt">
<div class="field-items">
<div class="field-item odd">
In the fourth and final part of our series celebrating 300 years since Leonhard Euler's birth, we let Euler speak for himself. <b>Chris Sangwin</b> takes us through excerpts of Euler's algebra text book and finds that modern teaching could have something to learn from Euler's methods. </div>
</div>
</div>
<div class="pub_date">December 2007</div>
<!-- plusimport -->
<br clear="all" />
<p><i>"It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of Light, it was the season of Darkness, it was the spring of hope, it was the winter of despair, we had everything before us, we had nothing before us, we were all going direct to Heaven, we were all
going direct the other way — in short, the period was so far like the present period, that some of its noisiest author<p><a href="https://plus.maths.org/content/tale-two-curricula-eulers-algebra-text-book" target="_blank">read more</a></p>https://plus.maths.org/content/tale-two-curricula-eulers-algebra-text-book#comments45algebracomplex numberEulerEuler yearirrational numberquadratic equationSat, 01 Dec 2007 00:00:00 +0000plusadmin2320 at https://plus.maths.org/contentMaths goes to the movies
https://plus.maths.org/content/maths-goes-movies
<div class="field field-type-text field-field-author">
<div class="field-items">
<div class="field-item odd">
Joan Lasenby </div>
</div>
</div>
<div class="field field-type-filefield field-field-abs-img">
<div class="field-items">
<div class="field-item odd">
<img class="imagefield imagefield-field_abs_img" width="100" height="100" alt="" src="https://plus.maths.org/content/sites/plus.maths.org/files/issue42/features/lasenby/icon.jpg?1172707200" /> </div>
</div>
</div>
<div class="field field-type-text field-field-abs-txt">
<div class="field-items">
<div class="field-item odd">
Computer generated movies and electronic games: <b>Joan Lasenby</b> tells us about the mathematics and engineering behind them. </div>
</div>
</div>
<div class="packagebacklink">Back to the <a href="https://plus.maths.org/content/ingenious-constructing-our-lives">Constructing our lives package</a></div><br clear="all">
<div class="pub_date">March 2007</div>
<!-- plusimport -->
<br clear="all" />
<p>Got your popcorn? Picked a good seat? Are you sitting comfortably? Then let the credits roll...</p><p><a href="https://plus.maths.org/content/maths-goes-movies" target="_blank">read more</a></p>https://plus.maths.org/content/maths-goes-movies#comments42complex numbercomputer animationcomputer gamingcomputer graphicscomputer sciencecomputer simulationgeometrymathematics in filmsquaternionvectorThu, 01 Mar 2007 00:00:00 +0000plusadmin2305 at https://plus.maths.org/contentUnveiling the Mandelbrot set
https://plus.maths.org/content/unveiling-mandelbrot-set
<div class="field field-type-text field-field-author">
<div class="field-items">
<div class="field-item odd">
Robert L. Devaney </div>
</div>
</div>
<div class="field field-type-filefield field-field-abs-img">
<div class="field-items">
<div class="field-item odd">
<img class="imagefield imagefield-field_abs_img" width="100" height="100" alt="" src="https://plus.maths.org/content/sites/plus.maths.org/files/issue40/features/devaney/icon.jpg?1157065200" /> </div>
</div>
</div>
<div class="field field-type-text field-field-abs-txt">
<div class="field-items">
<div class="field-item odd">
You've probably seen pictures of the famed Mandelbrot set and its mysterious cousins, the Julia sets. In this article <b>Robert L. Devaney</b> explores the maths behind these beauties and shows that they're loaded with mathematical meaning. </div>
</div>
</div>
<div class="pub_date">September 2006</div>
<!-- plusimport -->
<br clear="all" />
<i>Back in the 1970s and 1980s, mathematicians working in an area called dynamical systems made use of the ever-advancing computing power to draw computer images of the objects they were working on. What they saw blew their minds: fractal-like structures whose beauty and complexity is only rivalled by Nature itself. At the heart of them lay the Mandelbrot set, which today has achieved fame even
outside the field of dynamics.<p><a href="https://plus.maths.org/content/unveiling-mandelbrot-set" target="_blank">read more</a></p>https://plus.maths.org/content/unveiling-mandelbrot-set#comments40chaoscomplex dynamicscomplex numberdynamical systemfractalJulia setMandelbrot setThu, 31 Aug 2006 23:00:00 +0000plusadmin2288 at https://plus.maths.org/contentA fat chance of chaos?
https://plus.maths.org/content/fat-chance-chaos
<div class="field field-type-filefield field-field-abs-img">
<div class="field-items">
<div class="field-item odd">
<img class="imagefield imagefield-field_abs_img" width="100" height="100" alt="" src="https://plus.maths.org/content/sites/plus.maths.org/files/latestnews/jan-apr06/Julia/icon.jpg?1142294400" /> </div>
</div>
</div>
<div class="field field-type-text field-field-abs-txt">
<div class="field-items">
<div class="field-item odd">
Some news on Julia sets </div>
</div>
</div>
<div class="pub_date">14/03/2006</div>
<!-- plusimport --><br clear="all"</br>
<!-- END OF FILE: newinclude/news_header.html -->
<p>If you think that big isn't beautiful, then think again. It's just been proved that Julia sets, those fractals known for their stunning beauty, can be fat. And this fact means that you've got a non-zero chance of hitting on chaos.</p><p><a href="https://plus.maths.org/content/fat-chance-chaos" target="_blank">read more</a></p>https://plus.maths.org/content/fat-chance-chaos#commentschaoscomplex dynamicscomplex numberdynamical systemfractalJulia setMandelbrot setTue, 14 Mar 2006 00:00:00 +0000plusadmin2652 at https://plus.maths.org/contentUbiquitous octonions
https://plus.maths.org/content/ubiquitous-octonions
<div class="field field-type-text field-field-author">
<div class="field-items">
<div class="field-item odd">
John Baez </div>
</div>
</div>
<div class="field field-type-filefield field-field-abs-img">
<div class="field-items">
<div class="field-item odd">
<img class="imagefield imagefield-field_abs_img" width="100" height="100" alt="" src="https://plus.maths.org/content/sites/plus.maths.org/files/issue33/features/baez/icon.jpg?1104537600" /> </div>
</div>
</div>
<div class="field field-type-text field-field-abs-txt">
<div class="field-items">
<div class="field-item odd">
Mathematician and physicist <b>John Baez</b> declares himself fascinated by exceptions in mathematics. This interest has led him to study the octonions, and, through them, to find out more about the origins of complex numbers and quaternions. In the second of two articles, he talks about the characters of the different dimensions, beauty and utility in mathematics, and just why he likes dimension
8 so much. </div>
</div>
</div>
<div class="pub_date">January 2005</div>
<!-- plusimport -->
<br clear="all" />
<p><i>John Baez is a mathematical physicist at the University of California, Riverside. He specialises in quantum gravity and n-categories, but describes himself as "interested in many other things too." His <a href="http://math.ucr.edu/home/baez/README.html">homepage</a> is one of the most well-known maths/physics sites on the web, with his column, <a href=
"http://math.ucr.edu/home/baez/TWF.html">This Week's Finds in Mathematical Physics</a>, particularly popular.</i></p><p><a href="https://plus.maths.org/content/ubiquitous-octonions" target="_blank">read more</a></p>https://plus.maths.org/content/ubiquitous-octonions#comments33complex numberHamiltonmathematical thinkingoctonionsquaternionSat, 01 Jan 2005 00:00:00 +0000plusadmin2258 at https://plus.maths.org/contentCurious quaternions
https://plus.maths.org/content/curious-quaternions
<div class="field field-type-text field-field-author">
<div class="field-items">
<div class="field-item odd">
Helen Joyce </div>
</div>
</div>
<div class="field field-type-filefield field-field-abs-img">
<div class="field-items">
<div class="field-item odd">
<img class="imagefield imagefield-field_abs_img" width="100" height="100" alt="" src="https://plus.maths.org/content/sites/plus.maths.org/files/issue32/features/baez/icon.jpg?1099267200" /> </div>
</div>
</div>
<div class="field field-type-text field-field-abs-txt">
<div class="field-items">
<div class="field-item odd">
Mathematician and physicist <b>John Baez</b> declares himself fascinated by exceptions in mathematics. This interest has led him to study the octonions, and, through them, to find out more about the origins of complex numbers and quaternions. In the first of two articles, he talks about connections between algebra and geometry, and the importance of lateral thinking in mathematics. </div>
</div>
</div>
<div class="pub_date">November 2004</div>
<!-- plusimport -->
<p><a href="https://plus.maths.org/content/curious-quaternions" target="_blank">read more</a></p>https://plus.maths.org/content/curious-quaternions#comments32complex numberHamiltonquaternionMon, 01 Nov 2004 00:00:00 +0000plusadmin2254 at https://plus.maths.org/contentRoger Penrose: A Knight on the tiles
https://plus.maths.org/content/roger-penrose-knight-tiles
<div class="field field-type-text field-field-author">
<div class="field-items">
<div class="field-item odd">
The Plus Team </div>
</div>
</div>
<div class="field field-type-filefield field-field-abs-img">
<div class="field-items">
<div class="field-item odd">
<img class="imagefield imagefield-field_abs_img" width="130" height="130" alt="" src="https://plus.maths.org/content/sites/plus.maths.org/files/issue18/features/penrose/icon.jpg?1007164800" /> </div>
</div>
</div>
<div class="field field-type-text field-field-abs-txt">
<div class="field-items">
<div class="field-item odd">
Will we ever be able to make computers that think and feel? If not, why not? And what has all this got to do with tiles? <i>Plus</i> talks to <b>Sir Roger Penrose</b> about all this and more. </div>
</div>
</div>
<div class="pub_date">Jan 2002</div>
<!-- plusimport -->
<p><a href="https://plus.maths.org/content/roger-penrose-knight-tiles" target="_blank">read more</a></p>https://plus.maths.org/content/roger-penrose-knight-tiles#comments18aperiodic tilingartificial intelligencecomplex numberGrand Unified Theoryhuman consciousnessnon-algorithmic thoughtnon-recursive mathematicspenrose tilingquantum mechanicstessellationTuring testSat, 01 Dec 2001 00:00:00 +0000plusadmin2196 at https://plus.maths.org/content