Genes normally evolve by tiny mutations, but every now and then something more radical occurs and entire genes along a chromosome get flipped. Understanding gene flipping boils down to solving a problem from pure maths. Colva Roney-Dougal and Vincent Vatter explain, taking us on a journey from waiters sorting pancakes, via one of the richest men in the world, to the genetic similarities of mice and humans.
We have all become more aware of the dangers of influenza this year, but why is it so dangerous? Julia Gog explains that the unusual structure of the influenza genome can lead to dangerous evolutionary jumps, and how mathematics is helping to understand how the virus replicates.
New insights into gene permutations
We live in a world full of information and it's a statistician's job to make sense of it. In this article Dianne Cook explores ways of analysing data and shows how they can be applied to anything from investigating diners' tipping behaviour to understanding climate change and genetics.
Game theorists model the evolution of trust and trustworthiness
Food evolution
Modelling terrorist activity
Mathematics tackles an eternal question
Next year is a great one for biology. Not only will we celebrate 150 years since the publication of On the origin of species, but also 200 years since the birth of its author, Charles Darwin. At the heart of Darwin's theory of evolution lies a beautifully simple mathematical object: the evolutionary tree. In this article we look at how maths is used to reconstruct and understand it.