47
https://plus.maths.org/content/issue/issue/47
enMaths, madness and movies
https://plus.maths.org/content/os/issue47/features/mulcare/index
<div class="field field-type-text field-field-author">
<div class="field-items">
<div class="field-item odd">
Charlotte Mulcare </div>
</div>
</div>
<div class="field field-type-filefield field-field-abs-img">
<div class="field-items">
<div class="field-item odd">
<img class="imagefield imagefield-field_abs_img" width="100" height="100" alt="" src="https://plus.maths.org/content/sites/plus.maths.org/files/issue47/features/mulcare/icon.jpg?1212274800" /> </div>
</div>
</div>
<div class="field field-type-text field-field-abs-txt">
<div class="field-items">
<div class="field-item odd">
In the movies mathematicians are mostly mad. Since here at <i>Plus</i> we firmly believe in our sanity, we're puzzled as to why. So we charged <b>Charlotte Mulcare</b> with the unenviable task of sifting through five well-known maths movies and speculate towards an answer. </div>
</div>
</div>
<div class="pub_date">June 2008</div>
<!-- plusimport -->
<br clear="all" />
<p>Mathematicians have often been considered a little eccentric; Charles Darwin once defined a mathematician as "a blind man in a dark room looking for a black cat which isn't there." Now, in the age of film, movie makers seem to go one step further: mathematicians appear to be disturbed at best, displaying a kind of neuroses through numbers. Browse the Web for films about mathematicians, and you
will find a collection of protagonists plagued by mental instability.</p><p><a href="https://plus.maths.org/content/os/issue47/features/mulcare/index" target="_blank">read more</a></p>https://plus.maths.org/content/os/issue47/features/mulcare/index#comments47a beautiful mindgood will huntingmathematics in filmsmathematics in the mediaPiMon, 16 Jun 2008 09:58:50 +0000mf3442334 at https://plus.maths.org/contentCantor and Cohen: Infinite investigators part I
https://plus.maths.org/content/cantor-and-cohen-infinite-investigators-part-i
<div class="field field-type-text field-field-author">
<div class="field-items">
<div class="field-item odd">
Richard Elwes </div>
</div>
</div>
<div class="field field-type-filefield field-field-abs-img">
<div class="field-items">
<div class="field-item odd">
<img class="imagefield imagefield-field_abs_img" width="100" height="100" alt="" src="https://plus.maths.org/content/sites/plus.maths.org/files/issue47/features/elwes1/icon.jpg?1212274800" /> </div>
</div>
</div>
<div class="field field-type-text field-field-abs-txt">
<div class="field-items">
<div class="field-item odd">
What's the nature of infinity? Are all infinities the same? And what happens if you've got infinitely many infinities? In this article <b>Richard Elwes</b> explores how these questions brought triumph to one man and ruin to another, ventures to the limits of mathematics and finds that, with infinity, you're spoilt for choice. </div>
</div>
</div>
<div class="pub_date">June 2008</div>
<!-- plusimport -->
<br clear="all" />
<h1>The axiom of choice</h1>
<p><i>This is one half of a two-part article telling a story of two mathematical problems and two men: Georg Cantor, who discovered the strange world that these problems inhabit, and Paul Cohen (who died last year), who eventually solved them. The first of these problems — the axiom of choice — is the subject of this article, while the <a href="/issue47/features/elwes2">other article</a>
explores what is known as the continuum hypothesis.<p><a href="https://plus.maths.org/content/cantor-and-cohen-infinite-investigators-part-i" target="_blank">read more</a></p>https://plus.maths.org/content/cantor-and-cohen-infinite-investigators-part-i#comments47axiomaxiom of choicehistory of mathematicsinfinitylogicphilosophy of mathematicsRussell's Paradoxset theorywhat is infinityZermelo-Fraenkel axiomatisation of set theoryMon, 02 Jun 2008 23:00:00 +0000plusadmin2329 at https://plus.maths.org/contentCantor and Cohen: Infinite investigators part II
https://plus.maths.org/content/cantor-and-cohen-infinite-investigators-part-ii
<div class="field field-type-text field-field-author">
<div class="field-items">
<div class="field-item odd">
Richard Elwes </div>
</div>
</div>
<div class="field field-type-filefield field-field-abs-img">
<div class="field-items">
<div class="field-item odd">
<img class="imagefield imagefield-field_abs_img" width="100" height="100" alt="" src="https://plus.maths.org/content/sites/plus.maths.org/files/issue47/features/elwes2/icon.jpg?1212274800" /> </div>
</div>
</div>
<div class="field field-type-text field-field-abs-txt">
<div class="field-items">
<div class="field-item odd">
<b>Richard Elwes</b> continues his investigation into Cantor and Cohen's work. He investigates the <i>continuum hypothesis</i>, the question that caused Cantor so much grief. </div>
</div>
</div>
<div class="pub_date">June 2008</div>
<!-- plusimport -->
<br clear="all" />
<h1>The continuum hypothesis</h1>
<p><i>This is one half of a two-part article telling a story of two mathematical problems and two men: Georg Cantor, who discovered the strange world that these problems inhabit, and Paul Cohen (who died last year), who eventually solved them. This article explores what is known as the continuum hypothesis, while <a href="/issue47/features/elwes1">the other article</a> explores the axiom
of choice.<p><a href="https://plus.maths.org/content/cantor-and-cohen-infinite-investigators-part-ii" target="_blank">read more</a></p>https://plus.maths.org/content/cantor-and-cohen-infinite-investigators-part-ii#comments47axiomcontinuum hypothesishilbert problemshistory of mathematicsinfinitylogicphilosophy of mathematicsset theorywhat is infinityZermelo-Fraenkel axiomatisation of set theorySun, 01 Jun 2008 23:00:00 +0000plusadmin2330 at https://plus.maths.org/contentSaving lives: the mathematics of tomography
https://plus.maths.org/content/saving-lives-mathematics-tomography
<div class="field field-type-text field-field-author">
<div class="field-items">
<div class="field-item odd">
Chris Budd and Cathryn Mitchell </div>
</div>
</div>
<div class="field field-type-filefield field-field-abs-img">
<div class="field-items">
<div class="field-item odd">
<img class="imagefield imagefield-field_abs_img" width="100" height="100" alt="" src="https://plus.maths.org/content/sites/plus.maths.org/files/issue47/features/budd/icon.jpg?1212274800" /> </div>
</div>
</div>
<div class="field field-type-text field-field-abs-txt">
<div class="field-items">
<div class="field-item odd">
Not so long ago, if you had a medical complaint, doctors had to open you up to see what it was. These days they have a range of sophisticated imaging techniques at their disposal, saving you the risk and pain of an operation. <b>Chris Budd and Cathryn Mitchell</b> look at the maths that isn't only responsible for these medical techniques, but also for much of the digital revolution. </div>
</div>
</div>
<div class="pub_date">June 2008</div>
<!-- plusimport -->
<br clear="all" />
<div style="position: relative; left: 50%; width: 70%"><font size="2"><i>Back to the <a href="https://plus.maths.org/content/do-you-know-whats-good-you-maths-next-microscope">Next microscope package </a><br>Back to the <a href="https://plus.maths.org/content/do-you-know-whats-good-you-0">Do you know what's good for you package</a><p><a href="https://plus.maths.org/content/saving-lives-mathematics-tomography" target="_blank">read more</a></p>https://plus.maths.org/content/saving-lives-mathematics-tomography#comments47CAT scandifferential equationFourier analysisFourier transformfrequencyImage analysismedicine and healthwaveSat, 31 May 2008 23:00:00 +0000plusadmin2328 at https://plus.maths.org/contentThe amazing librarian
https://plus.maths.org/content/amazing-librarian-0
<p><a href="https://plus.maths.org/content/amazing-librarian-0" target="_blank">read more</a></p>47editorialSat, 31 May 2008 23:00:00 +0000plusadmin5067 at https://plus.maths.org/contentSaving lives: the mathematics of tomography
https://plus.maths.org/content/saving-lives-mathematics-tomography-0
<p><a href="https://plus.maths.org/content/saving-lives-mathematics-tomography-0" target="_blank">read more</a></p>47editorialSat, 31 May 2008 23:00:00 +0000plusadmin5068 at https://plus.maths.org/contentPlus Magazine
https://plus.maths.org/content/plus-magazine-56
<p><a href="https://plus.maths.org/content/plus-magazine-56" target="_blank">read more</a></p>47editorialSat, 31 May 2008 23:00:00 +0000plusadmin5146 at https://plus.maths.org/contentCatching primes
https://plus.maths.org/content/catching-primes
<div class="field field-type-text field-field-author">
<div class="field-items">
<div class="field-item odd">
Abigail Kirk </div>
</div>
</div>
<div class="field field-type-filefield field-field-abs-img">
<div class="field-items">
<div class="field-item odd">
<img class="imagefield imagefield-field_abs_img" width="100" height="100" alt="" src="https://plus.maths.org/content/sites/plus.maths.org/files/issue47/features/kirk/icon.jpg?1212274800" /> </div>
</div>
</div>
<div class="field field-type-text field-field-abs-txt">
<div class="field-items">
<div class="field-item odd">
The primes are the building blocks of our number system, but there's no general formula that will give you all of them. If you want them, you have to hunt them down one by one. <b>Abigail Kirk</b> investigates a method that does just that. </div>
</div>
</div>
<div class="pub_date">June 2008</div>
<!-- plusimport -->
<br clear="all" />
<p>Prime numbers play a hugely important role as the fundamental building blocks of our number system — and they remain at the centre of some of the biggest mysteries of mathematics. Prime numbers are those whole numbers that can only be divided by themselves and the number 1. For example, 7 is a prime, but 6 is not, because 6 = 2 × 3. Non-primes are known as <i>composite numbers</i></p><p><a href="https://plus.maths.org/content/catching-primes" target="_blank">read more</a></p>https://plus.maths.org/content/catching-primes#comments47number theoryprime numberprime number searchvisual sieveSat, 31 May 2008 23:00:00 +0000plusadmin2331 at https://plus.maths.org/contentUnderstanding uncertainty: The maths of surprises
https://plus.maths.org/content/understanding-uncertainty-maths-surprises
<div class="field field-type-text field-field-author">
<div class="field-items">
<div class="field-item odd">
David Spiegelhalter </div>
</div>
</div>
<div class="field field-type-filefield field-field-abs-img">
<div class="field-items">
<div class="field-item odd">
<img class="imagefield imagefield-field_abs_img" width="100" height="100" alt="" src="https://plus.maths.org/content/sites/plus.maths.org/files/abstractpics/5/June%2016%2C%202010/icon-5.jpg?1276678755" /> </div>
</div>
</div>
<div class="field field-type-text field-field-abs-txt">
<div class="field-items">
<div class="field-item odd">
<p>You meet an old friend on holiday, you find your colleague shares your birthday, you win the lottery. Exactly how rare are these rare events? David Spiegelhalter investigates in his regular column on uncertainty and risk.</p>
</div>
</div>
</div>
<div class="pub_date">June 2008</div>
<!-- plusimport -->
<br clear="all" />
<!-- #include virtual="../../include/gifd_here_box.html" -->
<!-- #echo var="risk" -->
<div align="center" style="margin-right:auto;margin-left:auto;width:600; font-size:15; border: #9a7a9f 2px solid; padding:5px;">This article is adapted from material on the <a href="http://understandinguncertainty.org/">Understanding Uncertainty website</a>.</div>
<br />
<br />
<p><i>A family has three children all of whom were born on January 29th.</i></p><p><a href="https://plus.maths.org/content/understanding-uncertainty-maths-surprises" target="_blank">read more</a></p>https://plus.maths.org/content/understanding-uncertainty-maths-surprises#comments47averageCMScoincidenceeditorialmeanprobabilityrare eventrisk analysisstatisticsunderstanding uncertaintySat, 31 May 2008 23:00:00 +0000plusadmin5147 at https://plus.maths.org/contentCareer interview: Exhibition curator
https://plus.maths.org/content/career-interview-exhibition-curator
<div class="field field-type-text field-field-author">
<div class="field-label">author: </div>
<div class="field-items">
<div class="field-item odd">
Marc West </div>
</div>
</div>
<div class="field field-type-filefield field-field-abs-img">
<div class="field-items">
<div class="field-item odd">
<img class="imagefield imagefield-field_abs_img" width="100" height="100" alt="" src="https://plus.maths.org/content/sites/plus.maths.org/files/issue47/interview/icon.jpg?1212274800" /> </div>
</div>
</div>
<div class="pub_date">June 2008</div>
<!-- plusimport -->
<p><i>Our career interviews usually explore the wide range of careers open to people with a degree in maths or related sciences — and quite a few of them have ended up in the arts. In this issue we turn the tables and talk to an artist who, through his job, has infiltrated the world of maths. But then, are the two worlds really that separate? This article is accompanied by a <a href=
"/podcasts/PlusCareersPodcastJune08.mp3">podcast</a>.</i></p><p><a href="https://plus.maths.org/content/career-interview-exhibition-curator" target="_blank">read more</a></p>https://plus.maths.org/content/career-interview-exhibition-curator#comments47architectureArts & Entertainmentcareer interviewmathematics and artpublic understanding of mathematicssculptureSat, 31 May 2008 23:00:00 +0000plusadmin2436 at https://plus.maths.org/contentPuzzle page
https://plus.maths.org/content/puzzle-page-81
<div class="field field-type-filefield field-field-abs-img">
<div class="field-items">
<div class="field-item odd">
<img class="imagefield imagefield-field_abs_img" width="100" height="100" alt="" src="https://plus.maths.org/content/sites/plus.maths.org/files/issue47/puzzle/icon.jpg?1212274800" /> </div>
</div>
</div>
<div class="field field-type-text field-field-abs-txt">
<div class="field-items">
<div class="field-item odd">
Tiling troubles </div>
</div>
</div>
<div class="pub_date">June 2008</div>
<!-- plusimport -->
<br clear="all" />
<!-- #include virtual="../../include/gifd_here_box.html" -->
<h3>Tiling troubles</h3>
<!-- FILE: include/rightfig.html -->
<div class="rightimage" style="width: 425px;"><img src="/issue47/puzzle/bath.jpg" alt="Woman in bath" width="425" height="282" /></div>
<!-- END OF FILE: include/rightfig.html -->
<p>Perpendicula, the magnificent princess of the rectangle, is admiring her magnificent new bathroom. It's rectangular of course; 10m wide and 20m long.<div class="field field-type-nodereference field-field-sol-link">
<div class="field-items">
<div class="field-item odd">
<div class="field-label-inline-first">
Solution link: </div>
<a href="/content/puzzle-page-85">Tiling troubles solution</a> </div>
</div>
</div>
<p><a href="https://plus.maths.org/content/puzzle-page-81" target="_blank">read more</a></p>https://plus.maths.org/content/puzzle-page-81#comments47puzzleSat, 31 May 2008 23:00:00 +0000plusadmin2940 at https://plus.maths.org/content'How round is your circle?'
https://plus.maths.org/content/how-round-your-circle
<div class="pub_date">June 2008</div>
<!-- plusimport -->
<!-- FILE: include/leftfig.html -->
<div class="leftimage" style="width: 150px;"><img src="/issue47/reviews/book4/cover.jpg" alt="book cover" width="150" height="230" /></div>
<!-- END OF FILE: include/leftfig.html -->
<a name="book6" id="book6"></a>
<h2>How round is your circle? : Where engineering and mathematics meet</h2>
<h3>John Bryant and Chris Sangwin</h3>
<p>In their new book John Bryant and Chris Sangwin explore the complex problems and challenges facing engineers and mathematicians now and throughout history.<p><a href="https://plus.maths.org/content/how-round-your-circle" target="_blank">read more</a></p>https://plus.maths.org/content/how-round-your-circle#comments47book reviewSat, 31 May 2008 23:00:00 +0000plusadmin3169 at https://plus.maths.org/content'Impossible?'
https://plus.maths.org/content/impossible
<div class="pub_date">June 2008</div>
<!-- plusimport -->
<!-- FILE: include/leftfig.html -->
<div class="leftimage" style="width: 150px;"><img src="/issue47/reviews/book5/cover.jpg" alt="book cover" width="150" height="230" /></div>
<!-- END OF FILE: include/leftfig.html -->
<h2>Impossible?<p><a href="https://plus.maths.org/content/impossible" target="_blank">read more</a></p>https://plus.maths.org/content/impossible#comments47book reviewSat, 31 May 2008 23:00:00 +0000plusadmin3170 at https://plus.maths.org/content'Finding moonshine'
https://plus.maths.org/content/finding-moonshine
<div class="pub_date">June 2008</div>
<!-- plusimport -->
<!-- FILE: include/leftfig.html -->
<div class="leftimage" style="width: 150px;"><img src="/issue47/reviews/book3/cover.jpg" alt="book cover" width="150" height="238" /></div>
<!-- END OF FILE: include/leftfig.html -->
<h2>Finding moonshine: A mathematician's journey through symmetry</h2>
<h3>Marcus du Sautoy</h3>
<p>Ever wondered what mathematicians do all day?</p><p><a href="https://plus.maths.org/content/finding-moonshine" target="_blank">read more</a></p>https://plus.maths.org/content/finding-moonshine#comments47book reviewSat, 31 May 2008 23:00:00 +0000plusadmin3171 at https://plus.maths.org/content'The shoelace book'
https://plus.maths.org/content/shoelace-book
<div class="pub_date">June 2008</div>
<!-- plusimport -->
<!-- FILE: include/leftfig.html -->
<div class="leftimage" style="width: 150px;"><img src="/issue47/reviews/book2/cover.jpg" alt="book cover" width="150" height="208" /></div>
<!-- END OF FILE: include/leftfig.html -->
<h2>The shoelace book: A mathematical guide to the best (and worst) ways to lace your shoes</h2>
<h3>Burkard Polster</h3>
<p>How do you do it? Horizontally from side to side, or perhaps criss-cross, producing a series of Xs running up your feet?<p><a href="https://plus.maths.org/content/shoelace-book" target="_blank">read more</a></p>https://plus.maths.org/content/shoelace-book#comments47book reviewSat, 31 May 2008 23:00:00 +0000plusadmin3172 at https://plus.maths.org/content