five-fold tiling problem
https://plus.maths.org/content/taxonomy/term/823
enThe trouble with five
https://plus.maths.org/content/trouble-five
<div class="field field-type-text field-field-author">
<div class="field-items">
<div class="field-item odd">
Craig Kaplan </div>
</div>
</div>
<div class="field field-type-filefield field-field-abs-img">
<div class="field-items">
<div class="field-item odd">
<img class="imagefield imagefield-field_abs_img" width="100" height="100" alt="" src="https://plus.maths.org/content/sites/plus.maths.org/files/issue45/features/kaplan/icon.jpg?1196467200" /> </div>
</div>
</div>
<div class="field field-type-text field-field-abs-txt">
<div class="field-items">
<div class="field-item odd">
Squares do it, triangles do it, even hexagons do it — but pentagons don't. They just won't fit together to tile a flat surface. So are there <i>any</i> tilings based on fiveness? <b>Craig Kaplan</b> takes us through the five-fold tiling problem and uncovers some interesting designs in the process. </div>
</div>
</div>
<div class="pub_date">December 2007</div>
<!-- plusimport -->
<br clear="all" />
<p>We are all familiar with the simple ways of tiling the plane by equilateral triangles, squares, or hexagons. These are the three <i>regular</i> tilings: each is made up of identical copies of a <i>regular polygon</i> — a shape whose sides all have the same length and angles between them — and adjacent tiles share whole edges, that is, we never have part of a tile's edge overlapping part of
another tile's edge.</p>
<p><!-- FILE: include/centrefig.html --></p><p><a href="https://plus.maths.org/content/trouble-five" target="_blank">read more</a></p>https://plus.maths.org/content/trouble-five#comments45Euclidean geometryfive-fold tiling problemgeometryhyperbolic geometrypenrose tilingspherical geometrysymmetrytilingSat, 01 Dec 2007 00:00:00 +0000plusadmin2319 at https://plus.maths.org/content