constructivist mathematics
https://plus.maths.org/content/taxonomy/term/872
enThe philosophy of applied mathematics
https://plus.maths.org/content/philosophy-applied-mathematics
<div class="field field-type-text field-field-author">
<div class="field-items">
<div class="field-item odd">
Phil Wilson </div>
</div>
</div>
<div class="field field-type-filefield field-field-abs-img">
<div class="field-items">
<div class="field-item odd">
<img class="imagefield imagefield-field_abs_img" width="100" height="100" alt="" src="https://plus.maths.org/content/sites/plus.maths.org/files/abstractpics/5/8_jun_2011_-_1618/icon.jpg?1307546325" /> </div>
</div>
</div>
<div class="field field-type-text field-field-abs-txt">
<div class="field-items">
<div class="field-item odd">
<p>We all take for granted that mathematics can be used to describe the world, but when you think about it this fact is rather stunning. This article explores what the applicability of maths says about the various branches of mathematical philosophy.</p>
</div>
</div>
</div>
<p>I told a guest at a recent party that I use mathematics to try to understand migraines. She thought that I ask migraine sufferers to do mental arithmetic to alleviate their symptoms. Of course, what I really do is use mathematics to understand the biological causes of migraines.</p><p><a href="https://plus.maths.org/content/philosophy-applied-mathematics" target="_blank">read more</a></p>https://plus.maths.org/content/philosophy-applied-mathematics#commentsmathematical realityconstructivist mathematicsinfinitylogicphilosophy of mathematicsplatonismwhat is impossibleFri, 24 Jun 2011 09:35:32 +0000mf3445497 at https://plus.maths.org/contentConstructive mathematics
https://plus.maths.org/content/constructive-mathematics
<div class="field field-type-text field-field-author">
<div class="field-items">
<div class="field-item odd">
Phil Wilson </div>
</div>
</div>
<div class="field field-type-filefield field-field-abs-img">
<div class="field-items">
<div class="field-item odd">
<img class="imagefield imagefield-field_abs_img" width="100" height="100" alt="" src="https://plus.maths.org/content/sites/plus.maths.org/files/issue49/features/wilson/icon.jpg?1228089600" /> </div>
</div>
</div>
<div class="field field-type-text field-field-abs-txt">
<div class="field-items">
<div class="field-item odd">
If you like mathematics because things are either true or false, then you'll be worried to hear that in some quarters this basic concept is hotly disputed. In this article <b>Phil Wilson</b> looks at <i>constructivist mathematics</i>, which holds that some things are neither true, nor false, nor anything in between. </div>
</div>
</div>
<div class="pub_date">December 2008</div>
<!-- plusimport -->
<br clear="all" />
<p>Before the world awoke to its own finiteness and began to take the need for recycling seriously, one of the quintessential images of the working mathematician was a waste paper basket full of crumpled pieces of paper. The mathematician sits behind a large desk, furrowed brow resting on one hand, the other hand holding a stalled pencil over yet another sheet of paper soon to be crumpled and
discarded.</p><p><a href="https://plus.maths.org/content/constructive-mathematics" target="_blank">read more</a></p>https://plus.maths.org/content/constructive-mathematics#comments49binary logicconstructivist mathematicsintuitionist mathematicslaw of excluded middlelogicphilosophy of mathematicswhat is impossibleMon, 01 Dec 2008 00:00:00 +0000plusadmin2349 at https://plus.maths.org/content