Solitaire is a game played with pegs in a rectangular grid. A peg may jump horizontally or vertically, but not diagonally, over a peg in an adjacent square into a vacant square immediately beyond. The peg which was jumped over is then removed.

Starting with some arrangement of pegs, the pegs are jumped over each other until just one peg remains in a prescribed position.
There are many versions of the game. In the best-known version the board is cross-shaped, with pegs in every position except the centre. The object is to find a jumping procedure which will leave just one peg in the centre.

In "The Solitaire Advance" the problem is to arrange an "army" of pegs behind a line across the board, and then to jump them in such a way as to advance one of the pegs as far across the line as possible.

Just two pegs are needed to get one of them into the first row across the line,

while four pegs can be arranged and jumped so as to advance a peg into the second row,

and an army of eight pegs can be arranged and jumped so as to advance a peg into the third row.
Setting out an army of pegs which can advance a peg into the fourth row is rather more challenging. One solution is shown. There are several others.

Can an arrangement be found to advance a peg into the fifth row beyond the barrier? This turns out to be rather difficult, and after some unsuccessful attempts the suspicion takes hold that the task may be impossible. But even the strongest suspicion is not enough. A convincing argument is needed, proving beyond doubt that it is not possible to find any arrangement of pegs behind the barrier that can be used to jump a peg into the fifth row.
Such an argument was devised by the mathematician John Horton Conway. It relies on an ingenious way of assigning values to the squares of the grid.
The value 1 is assigned to the target position in the fifth row, and the positions below that are assigned the values
The value of
Let us examine what happens when a jump is made. \par If three squares are in a row, there are two possibilities. The first is that they are labelled

the total value of the occupied squares stays the same, since

the total value decreases, since

the total value of the occuped squares also decreases. In summary: as the pegs are jumped, the total value of the squares occupied by the solitaire army stays the same,
