Skip to main content
Home
plus.maths.org

Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Main navigation

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • For

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

      Popular topics and tags

      Shapes

      • Geometry
      • Vectors and matrices
      • Topology
      • Networks and graph theory
      • Fractals

      Numbers

      • Number theory
      • Arithmetic
      • Prime numbers
      • Fermat's last theorem
      • Cryptography

      Computing and information

      • Quantum computing
      • Complexity
      • Information theory
      • Artificial intelligence and machine learning
      • Algorithm

      Data and probability

      • Statistics
      • Probability and uncertainty
      • Randomness

      Abstract structures

      • Symmetry
      • Algebra and group theory
      • Vectors and matrices

      Physics

      • Fluid dynamics
      • Quantum physics
      • General relativity, gravity and black holes
      • Entropy and thermodynamics
      • String theory and quantum gravity

      Arts, humanities and sport

      • History and philosophy of mathematics
      • Art and Music
      • Language
      • Sport

      Logic, proof and strategy

      • Logic
      • Proof
      • Game theory

      Calculus and analysis

      • Differential equations
      • Calculus

      Towards applications

      • Mathematical modelling
      • Dynamical systems and Chaos

      Applications

      • Medicine and health
      • Epidemiology
      • Biology
      • Economics and finance
      • Engineering and architecture
      • Weather forecasting
      • Climate change

      Understanding of mathematics

      • Public understanding of mathematics
      • Education

      Get your maths quickly

      • Maths in a minute

      Main menu

    • Home
    • Articles
    • Collections
    • Podcasts
    • Maths in a minute
    • Puzzles
    • Videos
    • Topics and tags
    • Audiences

      • cat icon
        Curiosity
      • newspaper icon
        Media
      • graduation icon
        Education
      • briefcase icon
        Policy

      Secondary menu

    • My list
    • About Plus
    • Sponsors
    • Subscribe
    • Contact Us
    • Log in
    • Mathematical mysteries: Survival of the nicest?

      Helen Joyce
      1 December, 2001
      4 comments
      Mar 2002

      Survival of the nicest?

      One of the most puzzling aspects of human behaviour is cooperation, in situations where backstabbing and selfishness would seem to be more rewarding. From the point of view of evolutionary theory, the very existence of altruism and cooperation appear mysterious. The mechanics of evolution seem to imply that rugged competition is the order of the day; that, given an opportunity to benefit by cheating someone, or by defaulting on a deal, we will inevitably do so. Surely to do otherwise would mean relegation to the sidelines of the evolutionary game - and in that game, demotion means extinction.

      In fact, as even the most cynical observer must admit, cooperation is rife in human society. Even if you sometimes despair of human nature, you must admit that the "dog-eat-dog" scenario conjured up by the phrase "survival of the fittest" doesn't bear much resemblance to life as we know it. So it must be that, from a purely selfinterested point of view, cooperation can actually be good for us.

      Solitary confinement

      Solitary confinement

      To highlight this puzzle, consider the Prisoner's Dilemma, described in detail in Adam Smith and the invisible hand in Issue 14 of Plus. To summarise, this very famous paradox in Game Theory describes two people suspected of being accomplices in a crime. They are held prisoner in separate, non-communicating cells. The police visit each prisoner, and tell both that if neither confesses, each will be sentenced to two years in jail. However, if only one prisoner confesses, implicating the other, the one who confesses will get off scot-free as a reward, and the other, who didn't confess, will receive a punitive sentence of seven years. If each confesses and implicates the other, both will be sentenced to three years.

      What should a prisoner do in this situation? Suppose the other prisoner doesn't confess. Then the best course of action is to confess, and go free. Even if the other prisoner does confess, it will be better to have done likewise - at least the sentence will be lower. Both prisoners will reason thus, so both will confess and end up serving sentences of five years - even though, if both had remained silent, both would have served sentences of only three years.

      Second-guessing

      Second-guessing

      If you think this dilemma is very far from your everyday life - after all, you are lawabiding and will never be thrown in jail! - think again. Every time you make a bargain, you are potentially facing the prisoner's dilemma. What is to stop you - or, more to the point, the person you are making the bargain with - from defaulting? Surely both of you will be tempted by the prospect of getting something for nothing, and afraid that if you are honest the other person won't be, and you'll get landed with the so-called "sucker's payoff" - getting nothing for something? It's all very well to say that "honesty is the best policy" but surely this is a luxury that only the civilised and comparatively rich can afford?

      Well, the good news is that we are not dependent on the benevolence of others, as the prisoner's dilemma would seem to suggest. In fact, cooperation can spontaneously break out even among fundamentally selfish agents - provided you assume that people meet each other more than once, and can remember what the other person did last time they tried to strike a bargain.

      To explore this sort of sitution, political scientist Robert Axelrod invented the game of "Iterated Prisoner's Dilemma" - Prisoner's Dilemma played repeatedly against the same opponent - and set up a tournament, inviting academics from all over the world to devise strategies. First Axelrod compared various strategies by pairing them and seeing who won; then he held a meta-tournament, in which there were many agents, each with its own strategy which it was allowed to modify in response to what was going on around it, for example if it saw that other agents had more successful strategies.

      Over the long term, Axelrod discovered that selfish strategies tended to do very badly, as did foolishly generous strategies. Defecting encouraged others to defect; not punishing others for defecting only encouraged them to do so again. One of the most successful and stable (in other words, successful against many different strategies and in many different environments) was "Tit for Tat". This strategy involves cooperating the first time you meet another agent, and after that always repeating your opponent's last move. So if your opponent defaults on one turn, you punish them by defaulting on the next; if they cooperate on one turn, you reward them by cooperating on the next.

      A slightly better strategy - because it avoids the possibility of getting trapped into long cycles of retaliation - is "Tit for Tat with forgiveness". This is Tit for Tat with a small randomised possibility of forgiving a defaulter by cooperating anyway. Forgiveness is particularly helpful if you introduce the possibility of misinformation into the game - that is, if moves are sometimes randomly misreported.

      The submitted strategies varied in many ways - initial hostility, tendency to forgive or retaliate, complexity, how much past behaviour they took into account, and so on. No one strategy will always be best because how a strategy does depends on who the other players are - if you're playing against mugs, you may as well be a freeloader, and if you're playing against sharks, you may as well get your retaliation in first! And research into human behaviour is ongoing, with biologists, economists and mathematicians studying phenomena such as spiteful behaviour, altruism, and kin selection (generosity between close relatives, which is evolutionarily useful since their genes are similar). But Tit for Tat did well or best in Axelrod's tournament against very many different opponents - showing how cooperation could evolve using only the selfish mechanisms of natural selection.


      About the author

      Helen Joyce is editor of Plus.

      • Log in or register to post comments

      Comments

      Anonymous

      7 October 2010

      Permalink

      that if your opponent plays by tit for tat and you play 3 or more games of prisoners delimia you end up with more points over all if you ALWAYS cooperate.

      usually the prisoners delimia is played so the person with the HIGHER score wins. I know that's weird

      But it's 1 point for both competing
      3 points for both cooperating and
      5 points for one cooperating and one competing.

      Game one:
      Tit for tat: Cooperate
      You compete

      Score
      You: 5
      TFT: 1

      Game 2
      tit for tat: compete
      you: compete

      You: 6
      TFT: 2

      Game 3:
      Tit for tat: Compete
      you: Compete

      You: 7
      TFT: 3

      Set 2:
      Game 1
      TFT: cooperate
      you: cooperate.

      3/3

      Game 2
      TFT: Cooperate
      You: cooperate

      6/6

      Game 3:
      TFT: cooperate
      you: cooperate.

      9/9.

      Sense most people will play by tit for tat it pretty much proves cooperation is more efficent, you should read the myth of competition. the truth is competing is actually LESS efficent than cooperation. and studies prove it!

      • Log in or register to post comments

      Anonymous

      18 April 2016

      Permalink

      I have been arguing for years - from repeated observation - that smaller communities are kinder and more caring than bigger ones and this, "cooperation can spontaneously break out even among fundamentally selfish agents - provided you assume that people meet each other more than once, and can remember what the other person did last time they tried to strike a bargain," finally gives me a logical reason for it: you can "assume that people meet each other more than once" in a small community but not in a bigger one.
      Thanks!!

      • Log in or register to post comments

      Demer Burrow

      24 October 2017

      In reply to The benefits of small communities by Anonymous

      Permalink

      Populations grow and there is an important 'science' to dealing with diverse beliefs, needs, cultures, etc. Problems within smaller communities are easier to control and less complicated.

      • Log in or register to post comments

      Demer Burrow

      24 October 2017

      Permalink

      Thanks for sharing your thoughts. This article and it's concepts truly help me approach 'abusive' situations much more mildly.

      • Log in or register to post comments

      Read more about...

      evolution
      game theory
      iterated prisoners' dilemma
      altruism
      cooperation
      Tit for Tat
      Tit for Tat with forgiveness
      prisoner's dilemma
      Mathematical mysteries
      University of Cambridge logo

      Plus Magazine is part of the family of activities in the Millennium Mathematics Project.
      Copyright © 1997 - 2025. University of Cambridge. All rights reserved.

      Terms