Skip to main content
Home
plus.maths.org

Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Main navigation

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • For

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

      Popular topics and tags

      Shapes

      • Geometry
      • Vectors and matrices
      • Topology
      • Networks and graph theory
      • Fractals

      Numbers

      • Number theory
      • Arithmetic
      • Prime numbers
      • Fermat's last theorem
      • Cryptography

      Computing and information

      • Quantum computing
      • Complexity
      • Information theory
      • Artificial intelligence and machine learning
      • Algorithm

      Data and probability

      • Statistics
      • Probability and uncertainty
      • Randomness

      Abstract structures

      • Symmetry
      • Algebra and group theory
      • Vectors and matrices

      Physics

      • Fluid dynamics
      • Quantum physics
      • General relativity, gravity and black holes
      • Entropy and thermodynamics
      • String theory and quantum gravity

      Arts, humanities and sport

      • History and philosophy of mathematics
      • Art and Music
      • Language
      • Sport

      Logic, proof and strategy

      • Logic
      • Proof
      • Game theory

      Calculus and analysis

      • Differential equations
      • Calculus

      Towards applications

      • Mathematical modelling
      • Dynamical systems and Chaos

      Applications

      • Medicine and health
      • Epidemiology
      • Biology
      • Economics and finance
      • Engineering and architecture
      • Weather forecasting
      • Climate change

      Understanding of mathematics

      • Public understanding of mathematics
      • Education

      Get your maths quickly

      • Maths in a minute

      Main menu

    • Home
    • Articles
    • Collections
    • Podcasts
    • Maths in a minute
    • Puzzles
    • Videos
    • Topics and tags
    • Audiences

      • cat icon
        Curiosity
      • newspaper icon
        Media
      • graduation icon
        Education
      • briefcase icon
        Policy

      Secondary menu

    • My list
    • About Plus
    • Sponsors
    • Subscribe
    • Contact Us
    • Log in
    • News from the world of maths: 29 steps to universal (26/04/2006)

      26 April, 2006
      Wednesday, April 26, 2006

      29 steps to universal (26/04/2006)

      Think of a number, any number, and see if you can write it as the sum of square numbers: 13 = 22 + 32, 271 = 12 + 12 + 102 + 132, 4897582 = 62 + 952 + 22112...

      In 1770, Lagrange proved that every positive integer, no matter how large, can be written as a sum of at most four squares, x2 + y2 + z2 + t2. In the centuries since, mathematicians searched for other universal quadratic forms which could represent all the positive integers. Another 53 expressions, including 1x2 + 2y2 + 3z2 + 5t2, were found by Ramanujan in 1916. So many such universal forms exist, but how can you predict if a particular quadratic form is universal?

      Now the brilliant young mathematician Manjul Bhargava and his colleague Jonathan Hanke have found a surprisingly simple result that completely solves the problem of finding and understanding universal quadratic forms. They found a shortcut to deciding if a quadratic form is universal — to check if the form represents every single positive integer, you only have to check it represents a mere 29 particular integers, the largest of which is 290. Bharghava and Hanke then went on to find every universal quadratic form (with four variables), all 6,436 of them. You can read about this surprising result in Ivars Peterson's excellent article in Science News.

      Apart from Bhargava's brilliance as a mathematician (he was one of the youngest people to be made a full professor at just 28), he is also an accomplished musician. Both number theory and tabla playing may be viewed as the study of patterns, Bhargava told Peterson. "The goal of every number theorist and every tabla player," he explains in the article, "is to combine these patterns, carefully and creatively, so that they flow as a sequence of ideas, tell a story, and form a complete and beautiful piece."

      If you're struggling with a sum of squares, try out this useful applet by Dario Alpern.

      posted by Plus @ 2:15 PM

      0 Comments:

      • Log in or register to post comments
      University of Cambridge logo

      Plus is part of the family of activities in the Millennium Mathematics Project.
      Copyright © 1997 - 2025. University of Cambridge. All rights reserved.

      Terms

      We use cookies to enhance your experience.
      • About our cookies
      • Cookie details