quantum mechanics

The 2012 Nobel Prize for Physics has been awarded to Serge Haroche and David J. Wineland for ground-breaking work in quantum optics. By probing the world at the smallest scales they've shed light on some of the biggest mysteries of physics and paved the way for quantum computers and super accurate clocks.

In the first article of this series we introduced Schrödinger's equation and in the second we saw it in action using a simple example. But how should we interpret its solution, the wave function? What does it tell us about the physical world?

In the previous article we introduced Schrödinger's equation and its solution, the wave function, which contains all the information there is to know about a quantum system. Now it's time to see the equation in action, using a very simple physical system as an example. We'll also look at another weird phenomenon called quantum tunneling.

In the 1920s the Austrian physicist Erwin Schrödinger came up with what has become the central equation of quantum mechanics. It tells you all there is to know about a quantum physical system and it also predicts famous quantum weirdnesses such as superposition and quantum entanglement. In this, the first article of a three-part series, we introduce Schrödinger's equation and put it in its historical context.

The holy grail for 21st century physics is to produce a unified theory of everything that can describe the world at every level, from the tiniest particles to the largest galaxies. Currently the strongest contender for such a theory is something called M-theory. So what is this supposed mother of all theories all about?

Plants are amazingly good at something that is still flummoxing us humans in our quest for sustainable energy sources: turning sunlight into energy in an efficient way. Around 100 bilions tons of biomass are produced annually through photosynthesis. The question is, how exacty do plants do it?

Most of us think that we have the capacity to act freely. Our sense of morality, our legal system, our whole culture is based on the idea that there is such a thing as free will. It's embarrassing then that classical physics seems to tell a different story. And what does quantum theory have to say about free will?

Researchers in Germany have created a rare example of a weird phenomenon predicted by quantum mechanics: quantum entanglement, or as Einstein called it, "spooky action at a distance". The idea, loosely speaking, is that particles which have once interacted physically remain linked to each other even when they're moved apart and seem to affect each other instantaneously.

According to Einstein, the past, present and future have exactly the same character - so why do we feel that there is a particular moment we call "now"? The physicist George Ellis looks for an answer in the curious laws of quantum mechanics.

Physicists at the University of California, Los Angeles set out to design a better transistor and ended up with a discovery that may lead to a new explanation of electron spin and possibly even the nature of space.

Quantum mechanics is usually associated with weird and counterintuitve phenomena we can't observe in real life. But it turns out that quantum processes can occur in living organisms, too, and with very concrete consequences. Some species of birds use quantum mechanics to navigate. And as Plus found out at a recent conference, studying these little creatures' quantum compass may help us achieve the holy grail of computer science: building a quantum computer.

Quantum physics is a funny thing. With counterintuitive ideas such as superposition and entanglement, it doesn't seem to resemble reality as we know it, yet quantum physics is an incredibly successful theory of how the physical world operates. Plus attended the conference Quantum Physics and the Nature of Realtiy at the University of Oxford in September 2010. We spoke to Andrew Briggs, John Polkinghorne, Nicolas Gisin, David Wallace, Roger Penrose and Andrea Morello about how we can resolve the mysteries of quantum physics with our experience of reality. And we find out why quantum physics is just like riding a bike...