string theory

Strings. Image credit: Johnny Settle (used under Creative Commons licence)
"[String theory] has led us in strange directions that we couldn't conceive of; it's revealed depths of mathematical structure that we couldn't have anticipated". Watch a video interview with Professor Michael Green, winner of the 2014 Fundamental Physics Prize.
The fact that a sizeable proportion of the financial workforce is made up of physicists is one of the industry's best-kept secrets. We talk to Laura Tadrowski, who has made the leap from physics to finance.

How many dimensions are there? In the latest online poll of our Science fiction, science fact project you told us that you'd like an answer to this question. So we went to see theoretical physicist David Berman to find out more.

A bizarre set of of 8-dimensional numbers could explain how to handle string-theory's extra dimensions, why elementary particles come in families of three... and maybe even how spacetime emerges in four dimensions.

String theory has one very unique consequence that no other theory of physics before has had: it predicts the number of dimensions of space-time. But where are these other dimensions hiding and will we ever observe them?

Detail of M-theory multiple, Grenville Davey. Image © Isaac Newton Institute

On the face of it, an artist and a theoretical physicist might seem an unlikely pairing. But Turner Prize-winning sculptor Grenville Davey and string theorist David Berman's collaboration is producing beautiful, thought-provoking work inspired by the fundamental structure of the Universe. Julia Hawkins interviewed them to find out more about how the Higgs boson and T-duality are giving rise to art.

The Strong Fields, Integrability and Strings programme, which took place at the Isaac Newton Institute in 2007, explored an area that would have been close to Isaac Newton's heart: how to unify Einstein's theory of gravity, a continuation of Newton's own work on gravitation, with quantum field theory, which describes the atomic and sub-atomic world, but cannot account for the force of gravity.

The holy grail for 21st century physics is to produce a unified theory of everything that can describe the world at every level, from the tiniest particles to the largest galaxies. Currently the strongest contender for such a theory is something called M-theory. So what is this supposed mother of all theories all about?

This is an excerpt from Stephen Hawking's address to his 70th birthday symposium which took place on 8th January 2011 in Cambridge.

It's been nearly 18 months since the Large Hadron Collider at CERN started up and scientists are eagerly awaiting their first glimpse into the cosmic mysteries it was designed to explore. But when can we realistically expect the first ground-breaking discoveries to come through? Last week, John Ellis, outgoing leader of the theory division at CERN, addressed an audience of physicists at the University of Cambridge to update them on the current state of play. Plus went along and also managed to catch Ellis for a quick interview.

Syndicate content