Skip to main content
Home
plus.maths.org

Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Main navigation

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • For

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Popular topics and tags

    Shapes

    • Geometry
    • Vectors and matrices
    • Topology
    • Networks and graph theory
    • Fractals

    Numbers

    • Number theory
    • Arithmetic
    • Prime numbers
    • Fermat's last theorem
    • Cryptography

    Computing and information

    • Quantum computing
    • Complexity
    • Information theory
    • Artificial intelligence and machine learning
    • Algorithm

    Data and probability

    • Statistics
    • Probability and uncertainty
    • Randomness

    Abstract structures

    • Symmetry
    • Algebra and group theory
    • Vectors and matrices

    Physics

    • Fluid dynamics
    • Quantum physics
    • General relativity, gravity and black holes
    • Entropy and thermodynamics
    • String theory and quantum gravity

    Arts, humanities and sport

    • History and philosophy of mathematics
    • Art and Music
    • Language
    • Sport

    Logic, proof and strategy

    • Logic
    • Proof
    • Game theory

    Calculus and analysis

    • Differential equations
    • Calculus

    Towards applications

    • Mathematical modelling
    • Dynamical systems and Chaos

    Applications

    • Medicine and health
    • Epidemiology
    • Biology
    • Economics and finance
    • Engineering and architecture
    • Weather forecasting
    • Climate change

    Understanding of mathematics

    • Public understanding of mathematics
    • Education

    Get your maths quickly

    • Maths in a minute

    Main menu

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • Audiences

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • 'How to read historical mathematics'

    11 March, 2011

    How to Read Historical Mathematics

    By Benjamin Wardhaugh

    Benjamin Wardhaug's book is entitled How to read historical mathematics and this is precisely what it is about. It is an introduction to the marvellous world of the history of mathematics, aimed at the general public. You will not learn a lot either about mathematics or its history, but you will be much better prepared for reading old mathematical masterpieces after this book. Do not expect this book to give you a lot of answers – it won't. But it will teach you to ask the right questions.

    It would be fitting for the title of this book to end in a question mark. Like most good science books, you have more questions when you finish it than when you started. In fact, this is the central theme of the book: what are the right questions to have in mind when reading a piece of historical mathematics? The book is structured into five chapters.

    Chapter 1 is entitled What does it say? It teaches the reader to make sense out of the notation (or, frequently, lack thereof) used by early mathematicians. How does one go about translating old writing into modern mathematical terms? A few examples show convincingly that this is not a trivial task.

    Chapter 2 deals with the questions that are most delectable for any historian, not only a mathematical one. How should we read an old mathematical text to find out about its author? Who wrote it, in what circumstances and why? Too often historical texts obscure their authors, and it is one of the tasks and pleasures of the historian to reveal the real people that stand behind the theorems.

    Chapter 3 discusses old mathematical writings as real objects: books, manuscripts and random notes scribbled on random pieces of paper. "Disembodied" text (edited and published in a modern form) is not everything, since there are so many things that it does not reflect: the author could arrange the writing in a unique way, make corrections, drop a thought in the middle of a phrase and go back to a previous one. Besides, the history of books as material objects is an interesting pursuit in its own right.

    In Chapter 4, we are reminded of the importance of the reader. It matters who read the book. What audience, if any, did the author have in mind composing his text? Was it a student textbook, a scholarly article prepared for publication, a private letter? Naturally, the proper understanding of the text will depend on this.

    Finally, Chapter 5 is devoted to the most tortuous question of all: what pieces of historical mathematics should one read? In the vast multitude of texts, how can we determine what deserves attention? There are many factors to consider: the originality of the content, its influence on the course of mathematics, etc. Moreover, it is very rare indeed that when a mathematical result appeared for the first time, it was complete. The original formulation of many fundamental ideas lacked precision. Many theorems did not have proofs, at least not in the modern sense. Many of them are just not what they seem to be. It may take a very educated mathematician simply to recognise that a statement in the historical document is equivalent to a familiar theorem.

    Written in an informal language, this book nevertheless feels like a textbook for history students. It pauses to let the reader think (look out for the incandescent light bulbs scattered over the text), and you get a nice homework assignment in the end of each chapter. The main conclusions, summarising the chapters, are put in boxes. You will not be lost in this book; it is easy to navigate.

    This is a short work – only slightly over a hundred pages. Already because of its size, it cannot be more than an introduction. But it tickles the reader's curiosity and it opens up the field of historical mathematics, of which many people – even expert mathematicians – have only a rudimentary idea. Far from being a definitive text on the subject, this book provides an excellent starting point. It is well-suited for students and anyone who is not an expert but is interested in the history of mathematics.

    Book details:
    How to read historical mathematics
    Benjamin Wardhaugh
    hardback — 130 pages (2010)
    Princeton University Press
    ISBN: 978-0691140148

    About the author

    Ilia Rushkin is a Postdoctoral Research Fellow at the University of Nottingham. His research is in theoretical physics.

    • Log in or register to post comments

    Read more about...

    book review
    University of Cambridge logo

    Plus is part of the family of activities in the Millennium Mathematics Project.
    Copyright © 1997 - 2025. University of Cambridge. All rights reserved.

    Terms