Skip to main content
Home
plus.maths.org

Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Main navigation

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • For

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Popular topics and tags

    Shapes

    • Geometry
    • Vectors and matrices
    • Topology
    • Networks and graph theory
    • Fractals

    Numbers

    • Number theory
    • Arithmetic
    • Prime numbers
    • Fermat's last theorem
    • Cryptography

    Computing and information

    • Quantum computing
    • Complexity
    • Information theory
    • Artificial intelligence and machine learning
    • Algorithm

    Data and probability

    • Statistics
    • Probability and uncertainty
    • Randomness

    Abstract structures

    • Symmetry
    • Algebra and group theory
    • Vectors and matrices

    Physics

    • Fluid dynamics
    • Quantum physics
    • General relativity, gravity and black holes
    • Entropy and thermodynamics
    • String theory and quantum gravity

    Arts, humanities and sport

    • History and philosophy of mathematics
    • Art and Music
    • Language
    • Sport

    Logic, proof and strategy

    • Logic
    • Proof
    • Game theory

    Calculus and analysis

    • Differential equations
    • Calculus

    Towards applications

    • Mathematical modelling
    • Dynamical systems and Chaos

    Applications

    • Medicine and health
    • Epidemiology
    • Biology
    • Economics and finance
    • Engineering and architecture
    • Weather forecasting
    • Climate change

    Understanding of mathematics

    • Public understanding of mathematics
    • Education

    Get your maths quickly

    • Maths in a minute

    Main menu

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • Audiences

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Jail break: Solution

    14 December, 2011
    key

    There are 100 prisoners in 100 separate locked cells. During the night each of 100 prisoner officers visits the cells. The first officer visits every cell. The second officer visits cells 2,4,6,... etc (every 2nd cell), the third officer visits cells 3,6,9,..etc (every third cell), the fourth officer visits every fourth cell, and so on until the 100th officer visits the 100th cell. On a visit each officer unlocks the door if it is locked or locks the door if it is unlocked. If the cell remains unlocked after all officers have completed their rounds, the prisoner can escape. In the morning, how many prisoners have escaped and why?

    Solution

    A cell will remain unlocked in the morning if it has been visited by an odd number of prison officers during the night. Let's look at a particular cell $n$. It will be visited by an officer for every number $a$ that divides $n$ (including $a=1$ and $a=n$). If $a$ divides $n$, then so does $n/a$. Thus, divisors of $n$ come in pairs $(a,n/a)$. If $n$ is not a square number, then each such pair is made up of distinct numbers. So, if $n$ is not a square number, then cell $n$ is visited an even number of times and therefore ends up locked. If $n$ is a square number, then the cell is visited an odd number of times and remains unlocked in the end. There are 10 square numbers up to and including 100, so the answer is 10.

    This puzzle was contributed by John Rowland, an IT officer who also provides maths tuition, preparing students for examinations at GCSE and A level.

    Back to original puzzle

    • Log in or register to post comments
    University of Cambridge logo

    Plus is part of the family of activities in the Millennium Mathematics Project.
    Copyright © 1997 - 2025. University of Cambridge. All rights reserved.

    Terms