Skip to main content
Home
plus.maths.org

Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Main navigation

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • For

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Popular topics and tags

    Shapes

    • Geometry
    • Vectors and matrices
    • Topology
    • Networks and graph theory
    • Fractals

    Numbers

    • Number theory
    • Arithmetic
    • Prime numbers
    • Fermat's last theorem
    • Cryptography

    Computing and information

    • Quantum computing
    • Complexity
    • Information theory
    • Artificial intelligence and machine learning
    • Algorithm

    Data and probability

    • Statistics
    • Probability and uncertainty
    • Randomness

    Abstract structures

    • Symmetry
    • Algebra and group theory
    • Vectors and matrices

    Physics

    • Fluid dynamics
    • Quantum physics
    • General relativity, gravity and black holes
    • Entropy and thermodynamics
    • String theory and quantum gravity

    Arts, humanities and sport

    • History and philosophy of mathematics
    • Art and Music
    • Language
    • Sport

    Logic, proof and strategy

    • Logic
    • Proof
    • Game theory

    Calculus and analysis

    • Differential equations
    • Calculus

    Towards applications

    • Mathematical modelling
    • Dynamical systems and Chaos

    Applications

    • Medicine and health
    • Epidemiology
    • Biology
    • Economics and finance
    • Engineering and architecture
    • Weather forecasting
    • Climate change

    Understanding of mathematics

    • Public understanding of mathematics
    • Education

    Get your maths quickly

    • Maths in a minute

    Main menu

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • Audiences

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Maths solves frozen mystery

    14 February, 2014

    Climate change threatens the world's glaciers, which is why scientists simulate them on computers. Based on mathematical models, these computer simulations help predict how glaciers are likely to change in the future, depending on environmental factors.

    Aletsch glacier

    The Aletsch glacier in Switzerland.

    But you can also run these simulations backwards in time, to see how a glacier behaved in the past. This is what a mathematician and a glaciologist have just done, not in order to understand glaciers, but in order to solve a mystery. In March 1926 four young men, three of whom were brothers, set off on a tour from the Aletsch glacier in Switzerland, the longest glacier in the Alps. They never returned. It's likely they got caught up in a blizzard that raged in the mountains for several days. Despite an extensive search their bodies could not be found and nobody knew where on their trip they met their end. Eighty-six years later, in the summer of 2012, two English alpinists found the remains of the three brothers and some of their equipment.

    The mathematician Guillaume Jouvet of Freie Universität Berlin and the glaciologist Martin Funk of the ETH in Zürich realised that they could use a computer model of glaciers, which Jouvet had developed during his PhD in 2012, to find out where the men had met their death. The model was the first to represent the three-dimensional flow of a glacier, including the velocity of the flow beneath its surface. Starting from the place the men's bones were found, the scientists simulated the evolution of the glacier backwards in time. They found that the bodies probably moved by around 10.5km in the 86 years since they had been swallowed by the ice, at an average speed of 122 meters per year. In 1980 they were buried some 250m below the surface of the ice. And the place of the men's demise could be narrowed down to an area of 1600m by 300m.

    Jouvet and Funk hope that they can solve other glacial mysteries using their method. For example, in 1964 a plane carrying US military crashed on the Gauli glacier in Switzerland. Crew and passengers could be rescued, but the plane disappeared in the ice without a trace. Using their model, Juvet and Funk hope to predict when and where it will be released from the ice. And who knows what other icy stories their model will reveal in the future.

    Jouvet and Funk's work on the young men who died in 1926 has been published in the Journal of Glaciology. Thanks to our friend Thomas Vogt of the German Mathematical Association for bringing this story to our attention. You can read more about maths, ice and snow here on Plus.

    Read more about...
    mathematics and climate change
    linear model
    • Log in or register to post comments

    Read more about...

    mathematics and climate change
    linear model
    University of Cambridge logo

    Plus is part of the family of activities in the Millennium Mathematics Project.
    Copyright © 1997 - 2025. University of Cambridge. All rights reserved.

    Terms