Skip to main content
Home
plus.maths.org

Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Main navigation

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • For

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

      Popular topics and tags

      Shapes

      • Geometry
      • Vectors and matrices
      • Topology
      • Networks and graph theory
      • Fractals

      Numbers

      • Number theory
      • Arithmetic
      • Prime numbers
      • Fermat's last theorem
      • Cryptography

      Computing and information

      • Quantum computing
      • Complexity
      • Information theory
      • Artificial intelligence and machine learning
      • Algorithm

      Data and probability

      • Statistics
      • Probability and uncertainty
      • Randomness

      Abstract structures

      • Symmetry
      • Algebra and group theory
      • Vectors and matrices

      Physics

      • Fluid dynamics
      • Quantum physics
      • General relativity, gravity and black holes
      • Entropy and thermodynamics
      • String theory and quantum gravity

      Arts, humanities and sport

      • History and philosophy of mathematics
      • Art and Music
      • Language
      • Sport

      Logic, proof and strategy

      • Logic
      • Proof
      • Game theory

      Calculus and analysis

      • Differential equations
      • Calculus

      Towards applications

      • Mathematical modelling
      • Dynamical systems and Chaos

      Applications

      • Medicine and health
      • Epidemiology
      • Biology
      • Economics and finance
      • Engineering and architecture
      • Weather forecasting
      • Climate change

      Understanding of mathematics

      • Public understanding of mathematics
      • Education

      Get your maths quickly

      • Maths in a minute

      Main menu

    • Home
    • Articles
    • Collections
    • Podcasts
    • Maths in a minute
    • Puzzles
    • Videos
    • Topics and tags
    • Audiences

      • cat icon
        Curiosity
      • newspaper icon
        Media
      • graduation icon
        Education
      • briefcase icon
        Policy

      Secondary menu

    • My list
    • About Plus
    • Sponsors
    • Subscribe
    • Contact Us
    • Log in
    • Meddling with averages - solution

      19 October, 2010

      If the scores are 2 points for a correct answer and −1 point for a wrong answer, then the score is 100 for 50 correct, 97 for 49 correct and so on, giving possible scores of

      0, 1, 4, 7, ... , 97, 100.

      First note that not all students can have equal scores because both Tyler and Joseph's statements would be wrong in that case. Sadia says that no-one scores higher than the average. Since not all scores are equal, both the median and the mean are smaller than the highest score, so Sadia must be thinking of the mode. This tells us that the highest score is the most common score.

      Now suppose there are four students in total and that the highest score among them is 100. This score must occur at least twice because it is the mode. If it occurred three times, then Joseph's average would have to be the smallest number in the list of scores (since it only occurs once), but this is impossible for both mean and median. Therefore, the score 100 can only occur twice. Suppose the list of scores is x,y,100,100, with x≤y100. The median lies half-way between y and 100, and therefore does not occur as a score. This means that Joseph must be thinking of the arithmetic mean. This gives 200+x+y4=y, so x=3y−200. Setting y=97 gives 91, 97, 100, 100 as the list of scores. The mode is 100, the arithmetic mean is 97 and the median is 98.5, so all three students are correct.

      Now suppose that there are five students in total. As before, assume that the highest score is 100 and that it occurs at least twice (because it is the mode). Suppose the list of scores is x,y,z,100,100 with x≤y≤z≤100. Then z is the median, so Tyler must be thinking of the arithmetic mean. A possible configuration of scores would be x=91, y=94, z=97. This gives 100 as the mode, 97 as the median and 96.4 as the arithmetic mean.

      • Log in or register to post comments
      University of Cambridge logo

      Plus is part of the family of activities in the Millennium Mathematics Project.
      Copyright © 1997 - 2025. University of Cambridge. All rights reserved.

      Terms

      We use cookies to enhance your experience.
      • About our cookies
      • Cookie details