Skip to main content
Home
plus.maths.org

Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Main navigation

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • For

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Popular topics and tags

    Shapes

    • Geometry
    • Vectors and matrices
    • Topology
    • Networks and graph theory
    • Fractals

    Numbers

    • Number theory
    • Arithmetic
    • Prime numbers
    • Fermat's last theorem
    • Cryptography

    Computing and information

    • Quantum computing
    • Complexity
    • Information theory
    • Artificial intelligence and machine learning
    • Algorithm

    Data and probability

    • Statistics
    • Probability and uncertainty
    • Randomness

    Abstract structures

    • Symmetry
    • Algebra and group theory
    • Vectors and matrices

    Physics

    • Fluid dynamics
    • Quantum physics
    • General relativity, gravity and black holes
    • Entropy and thermodynamics
    • String theory and quantum gravity

    Arts, humanities and sport

    • History and philosophy of mathematics
    • Art and Music
    • Language
    • Sport

    Logic, proof and strategy

    • Logic
    • Proof
    • Game theory

    Calculus and analysis

    • Differential equations
    • Calculus

    Towards applications

    • Mathematical modelling
    • Dynamical systems and Chaos

    Applications

    • Medicine and health
    • Epidemiology
    • Biology
    • Economics and finance
    • Engineering and architecture
    • Weather forecasting
    • Climate change

    Understanding of mathematics

    • Public understanding of mathematics
    • Education

    Get your maths quickly

    • Maths in a minute

    Main menu

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • Audiences

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • News from the world of maths: Beautiful symmetry provides glimpse into quantum world

    22 January, 2010
    Friday, January 22, 2010

    A complex symmetric structure known as the exceptional Lie group E8, which has so far only existed in the minds of mathematicians, seems to have turned up in real life for the first time. Physicists from the UK and Germany have conducted an experiment which involved cooling a crystal made of cobalt and niobium to near absolute zero and then applying a magnetic field. As they increased the strength of the magnetic field to a critical value, spontaneous patterns appeared in the configuration of electrons in the crystal, and these patterns carried the tell-tale signature of E8.

    Read more...

    Labels: Latest news

    posted by Plus @ 11:06 AM

    3 Comments:

    At 10:13 PM, Blogger BlindTurtle said...

    So, the answer to life, the universe, and everything is 57.

    So what is the question?

     
    At 4:34 PM, Anonymous Anonymous said...

    Not 57...30.

     
    At 1:41 PM, Blogger Steve said...

    Dr. Radu Coldea is deadly right. The E8 symmetry group is more fundamental than what was achieved experimentally. Alexander Zamolodchikov pointed out its possible importance in a somewhat limited context similar to what was done in Helmholtz Inst. and Oxford. However, and since almost twenty years, there was a fully developed general theory for high energy physics based on transfinite E8. This is the usual E8 plus a manifest golden mean effect in addition to the inert one. The theory is fully explained in various papers published in a journal for nonlinear dynamics, Chaos, Solitons & Fractals. I should list three papers which readers of this serious site may find very illuminating and informative. They are: High energy physics and the standard group from the exceptional Lie groups, 36, 2008, pp. 1-17. On a class of general theories for high energy particle physics, 14, 2002, pp. 649-668 and The theory of Cantorian spacetime and high energy particle physics (an informal review), 41, 2009, pp. 2635-2646. Further work on the subject was made by Ervin Goldfain, L. Marek-Crnjac, Ji-Huan He and G. Iovane as well as Tim Palmer.

     
    • Log in or register to post comments
    University of Cambridge logo

    Plus is part of the family of activities in the Millennium Mathematics Project.
    Copyright © 1997 - 2025. University of Cambridge. All rights reserved.

    Terms