Add new comment
-
Want facts and want them fast? Our Maths in a minute series explores key mathematical concepts in just a few words.
Generating electricity without the use of fossil fuels is not just an engineering and industrial challenge, it is also a huge mathematical challenge.
In this podcast author Coralie Colmez shares insights into her novel The irrational diary of Clara Valentine.
We talk to early career mathematicians who spent some of their summer holiday solving problems posed by industry — such as how to blend a perfect smoothie!
Don't like plant-based meat alternatives, but want to spare animals and the environment? There's hope on the horizon, aided by a good helping of maths.
Inverse problems are mathematical detective problems. They can help solve crimes, are used in medical imaging, and much more.
As pointed out in the comment above, the analysis of when to offer a double is not correct.
Assume that (1) you double when your probability of winning reaches d, (2) your opponent follows the same strategy, and (3) all doubles are accepted (which is the favored strategy if d<4/5). Then it is easy to show (in the Brownian motion model of the authors) that for d<2/3, the probability that your opponent will get an opportunity to redouble (before you win) is >1/2. In this case, an escalating series of doubles is likely, and your expected return is given by an infinite series of growing, alternating-sign terms (which does not converge). On the other hand, for d>2/3, the series converges (to a finite positive value). In this case, offering a double increases your expected return (by a factor of 2), and so is the favored strategy. Thus d=2/3 is the correct threshold for doubling.
Mark Srednicki
Dept of Physics
UC Santa Barbara