Add new comment
-
Want facts and want them fast? Our Maths in a minute series explores key mathematical concepts in just a few words.
How do you create dramatic film out of mathematics? We find out with writer and director Timothy Lanzone.
Mathematics plays a central role in understanding how infectious diseases spread. This collection of articles looks at some basic concepts in epidemiology to help you understand this fascinating and important field, and set you up for further study.
Find out why the formula we use to work out conditional probabilities is true!
- We talk about a play that explores the fascinating mathematical collaboration between the mathematicians GH Hardy and Srinivasa Ramanujan.
News stories have claimed they may have — but is this true?
The proof of the sine Basel conjecture (PI)^2/2 = 1 + 1/2^2 + 1/3^2 + 1/4^2 .... depends on the Newtonian Infinite Series formulae which are
the ABC summation 1 + Ax + Bx^2 + Cx^3 .... = (1+ax)(1+ bx)(1 +cx)....
the ABC Alternating 1 -Ax + Bx^2 - Cx^3 .... = (1- ax)(1- bx) (1- cx) ...
the A summation Ax = ax + bx + cx..... which seems to be a special case of the sine Basel conjecture (PI)^2 = 1 + 1/2^2 + 1/3^2 + 1/4^2 .....
with both sides multiplied by (u/PI)^2 and thus becomes u^2/6 = (u/PI)^2 + (u/2PI)^2 + (u/3PI)^2 .... clearly a version of the A summation
Au^2 = au^2 + bu^2 + cu^2 ... with A = 1/6, a =(1/PI)^2, b = (1/2PI)^2, c = (1/3PI)^2.
The alternating sine series is (sinu)/u = 1 - u^2/3! + u^4/5! - u^6/7!.....clearly a special case of the ABC Alternating, whose product series can now be
evaluated by substituting values for letters.