Add new comment
-
Want facts and want them fast? Our Maths in a minute series explores key mathematical concepts in just a few words.
A basic introduction to the most powerful tools in science and enginnering.
As COP28, the 2023 United Nations Climate Change Conference, kicks off we look at how maths can help understand the climate crisis.
How do you create dramatic film out of mathematics? We find out with writer and director Timothy Lanzone.
Mathematics plays a central role in understanding how infectious diseases spread. This collection of articles looks at some basic concepts in epidemiology to help you understand this fascinating and important field, and set you up for further study.
Find out why the formula we use to work out conditional probabilities is true!
Unfortunately prime count with Li(x) and even R(x) Riemann zêta function make a very roughly count of prime with large counting deviation.
Here is a new table count for curious:
Table du décompte des nombres premiers avec Go(X) et les écarts de calcul par rapport à pi(x).
X Go(x) pi(x) -Go(x) @
1,E+01 3,9 0,1
1,E+02 24,6 0,4
1,E+03 167,7 0,3
1,E+04 1 228,4 0,6
1,E+05 9 592,6 -0,6
1,E+06 78 498,6 -0,6
1,E+07 664 578,1 0,9
1,E+08 5 761 454,3 0,7
1,E+09 50 847 534,5 -0,5
1,E+10 455 052 511,9 -0,9
1,E+11 4 118 054 813,4 -0,4
1,E+12 37 607 912 018,1 -0,1
1,E+13 346 065 536 838,3 0,7
1,E+14 3 204 941 750 802,4 -0,4
1,E+15 29 844 570 422 668,4 0,6
@ gaston ouellet
This generalized count is realized with ( X2^2 - X1^2) / ln( X2^2). Fanstastic.