Add new comment
-
Want facts and want them fast? Our Maths in a minute series explores key mathematical concepts in just a few words.
A basic introduction to the most powerful tools in science and enginnering.
As COP28, the 2023 United Nations Climate Change Conference, kicks off we look at how maths can help understand the climate crisis.
How do you create dramatic film out of mathematics? We find out with writer and director Timothy Lanzone.
Mathematics plays a central role in understanding how infectious diseases spread. This collection of articles looks at some basic concepts in epidemiology to help you understand this fascinating and important field, and set you up for further study.
Find out why the formula we use to work out conditional probabilities is true!
It was great to understand your analysis.
I always felt there was a point of resonance where the instrument started making a much more beautiful sound. In my mind it had to do with what the sound waves were doing inside the body of the instrument, and not with the physics of the string, until I read your analysis.
I heard a famous soloist playing a Strad in a solo with the Philadelphia Orchestra and talent, genius, 20 years to a lifetime of study, and being able to walk on stage all play a part.
Rosen, type of strings, pressure on the strings, acceleretion, deceleration of the bow--there are so many variables. None of this is news.
Does this phenomenon vary with loud vs. soft playing?
I believe I understand your diagrams, but it appears that the finger is fixed when in fact it is moving up and down the string, creating harmonics, and generally being terribly busy. Is the phenomenon stable in the midst of this?
After you stop there is a residual sound audible, which for lack of a better term I called violinecho, which must be ongoing as we play. How do you account for this.
I hope to here your thoughts on these things, and bravo for your discovery. Is there a Nobel prize in music?