Add new comment
-
Want facts and want them fast? Our Maths in a minute series explores key mathematical concepts in just a few words.
What do chocolate and mayonnaise have in common? It's maths! Find out how in this podcast featuring engineer Valerie Pinfield.
Is it possible to write unique music with the limited quantity of notes and chords available? We ask musician Oli Freke!
How can maths help to understand the Southern Ocean, a vital component of the Earth's climate system?
Was the mathematical modelling projecting the course of the pandemic too pessimistic, or were the projections justified? Matt Keeling tells our colleagues from SBIDER about the COVID models that fed into public policy.
PhD student Daniel Kreuter tells us about his work on the BloodCounts! project, which uses maths to make optimal use of the billions of blood tests performed every year around the globe.
Like sung notes, string vibrato generally grows in both depth (distance from the original pitch) and speed (frequency of oscillation). But that's controlled by the performer, so the "mathematics" isn't driven by anything nearly as the bow/string/body interaction.
The position of the finger on the string changes (it's a rolling motion), which changes the length of the vibrating string. Shorter string length results in a higher pitch, while longer string length gives a lower pitch. The actual motion may come from the arm, wrist or finger (thus "arm vibrato", "wrist vibrato" and "finger vibrato"), but the physics of it at the contact point is essentially the same.
Unlike vibrato with other instruments, string vibrato doesn't go higher than the the original pitch - only lower, and then back up to pitch. The explanation usually given is this helps hear the top frequency as being stable. Going over the original pitch gives the note a sort of "wobble". It's not clear why this isn't the case for other instruments.